Datacenters control: challenges and opportunities

Damiano Varagnolo, PhD

Thanks to...

Thanks to...

Roadmap

Roadmap

"a facility that centralizes an organization's IT operations and equipment, and where it stores, manages, and disseminates its data"

TierPoint datacenters, Dallas

Facebook, Luleå, Sweden

Sun Microsystems Modular Datacenter

ç

Why do they exist?

• lower delays and high bandwidth between the servers

• easier to maintain

• higher level of data security and privacy

What is their footprint?

In 2013 for EU-28:

- electrical energy consumption: 103.4 GWh ($\sim 3\%$ of the total generation)
- industry market: 18.85 billion €
- CO₂ emissions: 38.6 million tonnes (347g/kWh)

Pan European Datacenter Academy Project (2014)
Final Report Summary

What will their footprint be?

Cisco Global Cloud Index 2013 - 2018

What will their footprint be?

"forecasted energy savings from implementing **best practices** in datacenters in EU is 15,500GWh per year, approximatively equivalent to the energy consumed by 1M EU households yearly, 1.1 billion euro in electricity costs, 5.4 Mtonnes of CO₂"

Pan European Datacenter Academy Project (2014)

Final Report Summary

The best practices

- Optimize Air Management
- Right-Size the Design
- Optimize the Central Plant
- Design Efficient Air Handling
- Improve Humidification Systems and Controls
- Specify Efficient Power Supplies
- Consider On-Site Generation
- Employ Liquid Cooling
- Reduce Standby Losses
- Improve Design, Operations, and Maintenance Processes
- Best Practices for Data Centers: Lessons Learned from Benchmarking 22 Data Centers Greenberg et al. (2006)
 - ACEEE Summer Study on Energy Efficiency in Buildings

The best practices & Automatic Control

- Optimize Air Management
- Right-Size the Design
- Optimize the Central Plant
- Design Efficient Air Handling
- Improve Humidification Systems and Controls
- Specify Efficient Power Supplies
- Consider On-Site Generation
- Employ Liquid Cooling
- Reduce Standby Losses
- Improve Design, Operations, and Maintenance Processes
- Best Practices for Data Centers: Lessons Learned from Benchmarking 22 Data Centers Greenberg et al. (2006)
 - ACEEE Summer Study on Energy Efficiency in Buildings

Roadmap

What is automatic control?

"the application of mechanisms to the operation and regulation of processes without continuous direct human intervention"

Wikipedia (Apr. 2017)

Example

Roadmap

Control perspectives on a single server

Control perspectives on a single server

Control problem

Control aim

maximize IT QoS + minimize electric consumptions

Inputs

Controllable:

- CPUs frequencies
- number of VMs
- fan speed

Disturbances

• temperature of the air inlet

Non-controllable:

IT load

Control perspectives on a single server

Hints on the dynamics

Control perspectives on a servers rack

Control perspectives on a servers rack

Control problem

Control aim

• maximize IT QoS + minimize electric consumptions

Inputs

Controllable:

- CRAC fans speed
- servers & VMs ON / OFF
- IT loads assignment

Disturbances

- temperature of the air inlet
- thermal couplings

Non-controllable:

IT load

Control perspectives on a whole datacenter

Roadmap

Heat recovery

technologies:

air cooled

liquid cooled

Heat recovery

Green Power: growing mushrooms with datacenters

- towards food independence
- less usage of land, fertilizers and pesticides
- usable in pharmaceuticals & as health promoter
- way of reusing local forest residues & other biowastes
- useful for bioconversion processes (e.g., ethanol production)

Green Power: growing mushrooms with datacenters

Green Power: growing mushrooms with datacenters

in collaboration with SLU

Fortum's Open District Heating initiative

Roadmap

Datacenters = bridges between electrical and thermal grids

Current research directions

Current research directions

Current research directions

The SICS ICE datacenter

The SICS ICE datacenter

Characteristics

- 3000 4000 servers (2MW)
- 160 m² lab
- biogas back up generators
- connections with the urban district heating network
- Generality, Flexibility and Expandability

The SICS ICE datacenter

Characteristics

- 3000 4000 servers (2MW)
- 160 m² lab
- biogas back up generators
- connections with the urban district heating network
- Generality, Flexibility and Expandability

Experiment-as-a-Service

In conclusion

• big "market", even bigger in the future

In conclusion

• big "market", even bigger in the future

• reusing heat is a societal need

In conclusion

- big "market", even bigger in the future
- reusing heat is a societal need
- handling the energy flows within and from the datacenters needs advanced control strategies

Data centers control: challenges and opportunities

Damiano Varagnolo

Lulea University of Technology

damiano.varagnolo@ltu.se

References

Appendix 1: ASHRAE recommended and allowable ranges for temperature and humidity

ASHRAE TC 9.9 Mission Critical Facilities, Technology Spaces and Electronic Equipment

	Recommended	Allowable
Temperature Range	18-27C	10-35C
Moisture Range	5.5C DP or 60 %RH	20-80 %RH

Appendix 2: state of the practice in the control framework

control level

single server

servers rack

whole datacenter

smart grid

Appendix 2: state of the practice in the control framework

Appendix 2: state of the practice in the control framework

Appendix 2: state of the art in the control framework

control level

single server

servers rack

whole datacenter

smart grid

Appendix 2: state of the art in the control framework

control technology control level big focus on IT-CT couplings single server IT-CT control: MPCs some robustness & learning servers rack (Bodik, Kliazovich, Lee, whole datacenter Parolini, Zhou, ...) smart grid

Appendix 2: state of the art in the control framework

