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An example: the transportation system




Distributed systems: requirements

@ easy implementability

o sufficiently fast convergence

@ contained bandwidth requirements
@ robustness w.r.t. failures

@ robustness w.r.t. churn

@ scalability



Topology Matters



Examples of (high-level) applications

knowledge of

the topology
allows to. ..

reconfigure




Graph discovering literature — some dichotomies

@ static networks vs dynamic networks
@ identity-based wvs privacy-aware algorithms

@ information-aggregation vs information-propagation
algorithms
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Graph discovering literature — some dichotomies

@ static networks vs dynamic networks
@ identity-based wvs privacy-aware algorithms

@ information-aggregation vs information-propagation
algorithms

Examples:
@ construction of graph views
e random walks

@ capture-recapture
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what can we estimate?
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Big question:

what can we estimate?

@ without any constraint = infer the whole graph perfectly
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Big question:

what can we estimate?

@ without any constraint = infer the whole graph perfectly

@ with anonymity constraints = infer the whole graph w.h.p.
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Today's niche

time & consensus & scalability constraints

(i.e., highly dynamic networks where convergence speed is crucial)

= analyze max-consensus
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A building block: size estimation with max-consensus

i.i.d. local generation
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A building block: size estimation with max-consensus

i.i.d. local generation

max consensus
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A building block: size estimation with max-consensus

i.i.d. local generation

max consensus
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A building block: size estimation with max-consensus

i.i.d. local generation

max consensus
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Performance characterization

(under no-quantization issues)

Generalizations:
@ perform M independent trials in parallel

® yim~ F(-) (absolutely continuous distribution)
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Extension 1 — neighborhoods size estimation

Assumption: synchronous communications
@ time is divided in epochs

@ everybody communicates once per epoch
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= induces well-defined k-steps neighborhoods:
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Extension 2 — number of links estimation

Assumption:
@ every agent knows its in- and out-degrees J

=- agents can pretend the behavior of an equivalent number of
agents:
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Extension 2 — number of links estimation

Assumption:
@ every agent knows its in- and out-degrees J

=- agents can pretend the behavior of an equivalent number of
agents:

Remarks
@ estimates twice the number of links

@ can estimate the number of links between k-steps neighbors
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e(i) = max dist(7, )

(i.e., longest shortest path starting from i)
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Extension 3 — estimation of eccentricities

Definition
. dist(i i
e(i) max dis (i,4)

(i.e., longest shortest path starting from /)

Assumption: synchronous communications

— GG —06-6——0-660— 6060

t=0
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yi(t):
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Extension 3 — estimation of eccentricities

Definition
. dist(i i
e(i) max dis (i,4)

(i.e., longest shortest path starting from /)

Assumption: synchronous communications
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Extension 3 — estimation of eccentricities

Definition
. dist(i i
e(i) = maxdist(i. j)

(i.e., longest shortest path starting from /)

Assumption: synchronous communications

— GG —06-6——0-660— 6060
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Extension 3 — estimation of eccentricities

Definition
. dist(i i
e(i) = maxdist(i. j)

(i.e., longest shortest path starting from /)

Assumption: synchronous communications
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Extension 3 — estimation of eccentricities

Definition
. dist(i i
e(i) = maxdist(i. j)

(i.e., longest shortest path starting from /)
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Extension 3 — estimation of eccentricities

Definition
. dist(i i
e(i) = maxdist(i. j)

(i.e., longest shortest path starting from /)

Assumption: synchronous communications
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Extension 3 — estimation of eccentricities

Definition
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Extension 3 — estimation of eccentricities

Definition
. dist(i i
e(i) = maxdist(i. j)

(i.e., longest shortest path starting from /)

Assumption: synchronous communications

—(pcida——@cdpb—+p—ca d—n—bdrca%—l:

t=0 1 2 3 4 5 6
0.3]10.7]0.7]0.7]0.7]0.7]0.7
0.6]10.6]0.6]0.9]0.9]0.9]0.9
0.1]0.8]0.8]10.8]0.8]0.8]0.8
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yi(t): =¢(i) =3

remark: statistical properties may depend on the actual graph
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Extension 4 — estimation of radii and diameters

Definitions

e g
=gl e

= under synchronous communications assumptions one can
distributedly estimate r, d through

S i a(f 8 _ ~( :
Tt el
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Application 1 - change detection

Implemented INRIA SensLab Strasbourg

t*—1 t* t*+1 t*+2
(OXOXOXOZ) 00000 22000 Q0000
© ©
© ©
© ©
(OJOIOROZ)] 00000 0000 @000

GLR approach
Ho: S(iy>Sforallic{t—T,... t}
Hi: existsi€{t—T,....t}st. S(>i)<$S

= accept Ho or H1 depending on the relative likelihood
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Application 2 - transportation systems

Idea: estimate

@ how many cars per meter per road’s segment & lane

o traffic behavior per segment

(average speed / acceleration, variances, ... )

Uses:
@ speed control
@ early warning

20



what can we estimate using max consensus?
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Big question:

what can we estimate using max consensus?

statistical strategies require
statistical identifiability characterizations

21



Statistical identifiability

Notation

o local values: x1 ~ pg(+), .., Xs ~ pxs(+)
e graph-dependent map: y = fg(x1,...,xs) = fg(x)

@ parameter of interest: 6

Definition
0 is said statistically identifiable if

Gi,Gost. 0140, = P [x € fg_ll(y)] £P [x € fgj(y)}

for some y
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A first characterization

Theorem
Hypotheses:

® p,, = px (i.e., agents are equal)

@ 0 statistically not identifiable from py

f(x) anonymously computable and independent on G

f(x) is a consensus
Thesis:

@ unique statistically identifiable 6 is the network size

bl



A first characterization

Theorem
Hypotheses:

® p,, = px (i.e., agents are equal)

@ 0 statistically not identifiable from py

f(x) anonymously computable and independent on G

f(x) is a consensus
Thesis:

@ unique statistically identifiable 6 is the network size

Implication:

@ under theorem's assumptions and “at most d
communications” one can infer just the network size

bl



Induced (and unanswered) questions

Assumptions (bounded memory / network size)

memory i
————— enough to have time counters
network size

memory .
——————— not enough to share graph views
network size

24



Induced (and unanswered) questions

Assumptions (bounded memory / network size)

memory i
————— enough to have time counters
network size

memory .
——————— not enough to share graph views
network size

@ what can be computed with “max-consensus +
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Induced (and unanswered) questions

Assumptions (bounded memory / network size)

memory i
————— enough to have time counters
network size

memory .
——————— not enough to share graph views
network size

@ what can be computed with “max-consensus +
time-counters”?

@ can we prove that “max-consensus + time-counters” are the
fastest?

@ are they also “unique”?

24



An even more basic question

Why should we do max-consensus on reals?

l.e., is it better to use discrete or “continuous” r.v.s?

75



Two simple and open problems

Assumptions:
@ memory = 50 bits (example)
@ d upper bound on the number of agents

@ metric: statistical estimation performance
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Two simple and open problems

Assumptions:
@ memory = 50 bits (example)
@ d upper bound on the number of agents

@ metric: statistical estimation performance

Scheme A: do as before (quantize real values)

e divide the 50 bits in M scalars (how?)
@ quantize opportunely (how?)
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Two simple and open problems

Assumptions:
@ memory = 50 bits (example)
@ d upper bound on the number of agents

@ metric: statistical estimation performance

Scheme A: do as before (quantize real values)

e divide the 50 bits in M scalars (how?)
@ quantize opportunely (how?)

Scheme B: each bit = Bernoulli

e compute the ML estimator (how?)
@ set the success probability optimally (how?)
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Summary: what do we know

statistical anonymous graph discovering

using max using average using other
consensus consensus consensus
Yim Yim Yim Yim

continuous  discrete continuous  discrete
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Summary: what do we know

statistical anonymous graph discovering

using max using average using other
consensus consensus consensus

Q)

Yim Yim Yim Yim
continuous  discrete continuous  discrete

O @
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Summarizing ...

graph disco-

vering is useful

max consensus
is a “lower
bound”

many questions

are still open
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