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This talk

the big
picture

(& motivations)

a particular
approach
(& usages)

future
works

(& visions)
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Smart objects. . .
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. . . for a distributed world?
(cf. the Metcalfe law)
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An example: the transportation system
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Distributed systems: requirements

easy implementability

sufficiently fast convergence

contained bandwidth requirements

robustness w.r.t. failures

robustness w.r.t. churn

scalability

. . .
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Topology Matters
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Examples of (high-level) applications

knowledge of
the topology
allows to. . .

optimizeinfer

reconfigure detect
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Graph discovering literature – some dichotomies

static networks vs dynamic networks
identity-based vs privacy-aware algorithms
information-aggregation vs information-propagation
algorithms

Examples:
construction of graph views
random walks
capture-recapture
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Big question:

what can we estimate?

without any constraint ⇒ infer the whole graph perfectly
with anonymity constraints ⇒ infer the whole graph w.h.p.
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Today’s niche

time & consensus & scalability constraints
(i.e., highly dynamic networks where convergence speed is crucial)

⇒ analyze max-consensus
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A building block: size estimation with max-consensus

i.i.d. local generation

max consensus

−log (ymax) ∼ exp
(
S
)

estimate S with
statistical inference

.

.
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Performance characterization
(under no-quantization issues)

Generalizations:
perform M independent trials in parallel
yi ,m ∼ F (·) (absolutely continuous distribution)

⇒ ML estimator: Ŝ =

(
− 1
M

M∑
m=1

log (F (ymax,m))

)−1

⇒ Ŝ
SM ∼ Inv-Gamma

(
M, 1

)
⇒ E

[
Ŝ
S

]
=

M
M − 1

⇒ var
(
Ŝ − S
S

)
≈ 1

M

⇒
(
Ŝ
)−1

= Ŝ−1 and Ŝ−1 is MVUE for S−1
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Extension 1 – neighborhoods size estimation

Assumption: synchronous communications
time is divided in epochs
everybody communicates once per epoch

a a a ab b b bc c c cd d d d
t

⇒ induces well-defined k-steps neighborhoods:

i
0.3
0.6
0.1
0.4

yi(t):

0t =
0.7
0.6
0.8
0.4

1
0.7
0.6
0.8
0.4

2
0.7
0.9
0.8
0.4

3
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Extension 2 – number of links estimation

Assumption:
every agent knows its in- and out-degrees

⇒ agents can pretend the behavior of an equivalent number of
agents:

i i
i

i
i

Remarks
estimates twice the number of links
can estimate the number of links between k-steps neighbors
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Extension 3 – estimation of eccentricities

Definition

e(i) := max
j∈V

dist(i , j)

(i.e., longest shortest path starting from i)

Assumption: synchronous communications

a a a ab b b bc c c cd d d d
t

0.3
0.6
0.1
0.4

yi(t):

0t =
0.7
0.6
0.8
0.4

1
0.7
0.6
0.8
0.4

2
0.7
0.9
0.8
0.4

3
0.7
0.9
0.8
0.4

4
0.7
0.9
0.8
0.4

5
0.7
0.9
0.8
0.4

6

⇒ ê(i) = 3

remark: statistical properties may depend on the actual graph
17
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Extension 4 – estimation of radii and diameters

Definitions

r := min
i∈V

e(i) d := max
i∈V

e(i)

⇒ under synchronous communications assumptions one can
distributedly estimate r , d through

r̂ = min
i∈V

ê(i) d̂ = max
i∈V

ê(i)
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Application 1 - change detection
Implemented INRIA SensLab Strasbourg

0 0

0
0

0

0

0

0

0

0

0

0
0

0

0

0

t∗ − 1
2 2

2 2

2

2
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2 2

t∗ + 1
2 2

2 2

2

2

22

2 2

t∗ + 2
0 0

0 0

0

0

00

0 0

t∗

GLR approach H0 : S(i) ≥ S for all i ∈ {t − T , . . . , t}

H1 : exists i ∈ {t − T , . . . , t} s.t. S(i) < S

⇒ accept H0 or H1 depending on the relative likelihood
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Application 2 - transportation systems

→ → → → → → → → →

→→ → → → →

←←←←←

Idea: estimate
how many cars per meter per road’s segment & lane
traffic behavior per segment
(average speed / acceleration, variances, . . . )

Uses:
speed control
early warning
. . .

20



Big question:

what can we estimate using max consensus?

statistical strategies require
statistical identifiability characterizations
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Statistical identifiability

Notation

local values: x1 ∼ px1(·), . . . , xS ∼ pxS (·)
graph-dependent map: y = fG(x1, . . . , xS) = fG(x)
parameter of interest: θ

Definition
θ is said statistically identifiable if

G1,G2 s.t. θ1 6= θ2 ⇒ P
[
x ∈ f −1

G1
(y)
]
6= P

[
x ∈ f −1

G2
(y)
]

for some y

22



A first characterization

Theorem
Hypotheses:

pxi = px (i.e., agents are equal)
θ statistically not identifiable from px

f (x) anonymously computable and independent on G
f (x) is a consensus

Thesis:

unique statistically identifiable θ is the network size

Implication:

under theorem’s assumptions and “at most d
communications” one can infer just the network size

23
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Induced (and unanswered) questions

Assumptions (bounded memory / network size)
memory

network size enough to have time counters

memory
network size not enough to share graph views

what can be computed with “max-consensus +
time-counters”?
can we prove that “max-consensus + time-counters” are the
fastest?
are they also “unique”?

24
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An even more basic question

Why should we do max-consensus on reals?

I.e., is it better to use discrete or “continuous” r.v.s?

25



Two simple and open problems

Assumptions:
memory = 50 bits (example)
∃ upper bound on the number of agents
metric: statistical estimation performance

Scheme A: do as before (quantize real values)

divide the 50 bits in M scalars (how?)
quantize opportunely (how?)

Scheme B: each bit = Bernoulli
compute the ML estimator (how?)
set the success probability optimally (how?)

26
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Summary: what do we know

statistical anonymous graph discovering

using max
consensus

yi ,m
continuous

yi ,m
discrete

using average
consensus

yi ,m
continuous

yi ,m
discrete

using other
consensus

?

?
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Summarizing . . .

graph disco-
vering is useful

max consensus
is a “lower
bound”

many questions
are still open
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