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Problem statement

inputs: set of noisy measurements of a certain signal:

ym = f (xm) + νm m = 1, . . . ,M

goal: estimate f (x)

x

y

f (x)
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Parametric approach
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Parametric approach

assumption: known structure but unknown parameters

example: exponential:

f (x) = exp (−θx) θ, x ∈ R+

x

y

exp (−3x)

goal: estimate θ starting from the data set {(xm, ym)}
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Parametric approach - interpretation

assume we don’t know how the function is made: f (·) could be
“almost everything”

⇓

f (·) lives in an infinite dimensional space → there is infinite
uncertainity

parametric approach: restrict the function to live in a known and
finite-dimensional space

⇒ it adds an infinite amount of prior information
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Parametric approach - order estimation

Quite important to estimate the order (e.g. for ARMA models)

Usual methods:

Bayesian information criterion

Akaike information criterion

Mallow’s Cp

general aim: find a trade-off between estimation error bias and
estimation error variance
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Nonparametric approach
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Nonparametric approach

assumption: signal f lives in a certain functions space:

f ∈ HK

goal: search the estimate f̂ directly inside this space, in
general via:

f̂ = arg minef ∈HK

(
Loss function

(
f̃ , {ym}

)
+ γ

∥∥∥f̃ ∥∥∥2

HK

)
motivations: functional structure of f could be not easily managed

with parametric structures
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Nonparametric approach - initial hypotheses

measurement model:
ym = Lm (f ) + νm

where:

functional Lm (f ) is linear and continuous in f
measurement noise νm is:

zero-mean Gaussian
i.i.d.
independent on f and on Lm (·)

f ∈ HK

HK is an infinite-dimensional Hilbert space
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From infinite to finite dimensionality

Theorem (Representer theorem - hypothesis)

Given the cost-function minimization problem:

f̂ = arg minef ∈HK

Q
(

L1

(
f̃
)
, . . . , LM

(
f̃
)
, y 1, . . . , yM ,

∥∥∥f̃ ∥∥∥2

HK

)
assume:

Lm

(
f̃
)

are linear and continuous in f̃

Q (·) is strictly increasing in
∥∥∥f̃ ∥∥∥

HK

there exists a solution to

arg minef ∈HK

Q (·)
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From infinite to finite dimensionality

Theorem (Representer theorem - conclusion)

. . . then the solution is on the form

f̂ (·) =
M∑

m=1

cmgm (·)

with:

(using Riesz’ representation theorem)

Lm (f ) = 〈gm, f 〉HK

span〈g1, . . . , gM〉 is at most M-dimensional

weights cm depend on Q (·) (will be derived later)
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Usual cost functions

with quadratic losses:

Q
(
f̃
)

=
M∑

m=1

(
f̃ (xm)− ym

)2

σ2 + γ
∥∥∥f̃ ∥∥∥2

HK

with Vapnik’s ε-insensitive losses:

Q
(
f̃
)

=
M∑

m=1

V
(
f̃ (xm) , ym

)
+ γ

∥∥∥f̃ ∥∥∥2

HK

where:

V
(
f̃ (xm) , ym

)
:=

 0 if
∣∣∣f̃ (xm)− ym

∣∣∣ ≤ ε∣∣∣f̃ (xm)− ym
∣∣∣− ε otherwise
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Reproducing kernel Hilbert spaces

Definition
An Hilbert space HK is said to have a reproducing kernel if there
exists:

K (·, ·) : D ×D →M

such that:
f (x) = 〈f (·) ,K (x , ·)〉HK

(called the reproducing property)

Theorem
If the reproducing kernel K (·, ·) exists then it is unique
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How to compute the optimal estimate

Representer theorem ⇒ f̂ (·) =
M∑

m=1

cmgm (·)

Reproducing kernel property ⇒ gm (·) = K (xm, ·)

Together ⇒ f̂ (·) =
M∑

m=1

cmK (xm, ·)
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Numerical solution with quadratic loss functions

If:

f̂ = arg minef ∈HK

 M∑
m=1

(
f̃ (xm)− ym

)2

σ2 + γ
∥∥∥f̃ ∥∥∥2

HK


then: c1

...
cM

 =


 K (x1, x1) · · · K

(
x1, xM

)
...

...
K
(
xM , x1

)
· · · K

(
xM , xM

)
+ γIM


−1  y 1

...
yM


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Numerical solution in Bayesian frameworks

first hypothesis: f is a realization of a zero-mean Gaussian process
with covariance K :

cov
(
f (xm) , f (xn)T

)
= K (xm, xn)

second hypothesis: f is independent on the measurement noise

Bayes estimator: f̂ = cov (f ,Y) var (Y)−1 Y Y :=

 y 1

...
yM


It is equal to the quadratic cost-function based estimator
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Drawbacks

Optimal estimate: f̂ (·) =
M∑

m=1

cmK (xm, ·)

1◦ feature: must invert (K + γIM)−1

2◦ feature: must store
[
c1, . . . , cM

]

Possible problems: if M is big then it could be:

computationally hard to find (invert an M ×M matrix)

hard to store or communicate (representation can be quite big)
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Approximated regression
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Approximated non parametric regression -
introduction

need for reduction in computational complexity, i.e.

need estimation algorithms with an O (·) smaller than O (M3)

need representations using less than M scalars

⇓

must find:

an E -dimensional model with E � M such that:

M := [φ1 (·) , . . . , φE (·)] RE M ⊆ HK

how to map the data set {X ,Y} into M
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Notation

Extension of finite linear algebra operations:

f Tg :=

∫
f (x)Tg (x) dx

Af (x ′) :=

∫
A (x ′, x) f (x) dx

f TAg :=

∫∫
f (x ′)TA (x ′, x) g (x) dx ′dx
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How to map data sets into the estimation model

assume basis Φ := [φ1 (·) , . . . , φE (·)] is given

If the inner product P of HK is given then:

the projection operator P is:

P = Φ
(
ΦTPΦ

)−1
ΦTP

the remainder operator R is given by:

R = I − P

P and R are such that:

‖f ‖2HK
= ‖Pf ‖2HK

+ ‖Rf ‖2HK
∀f ∈ HK
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How to map data sets into the estimation model

Given the projection operator P ,

if optimal estimate in HK : f̂ (·) =
M∑

m=1

cmK (xm, ·)

then optimal estimate in M : P f̂ (·)

drawback: still requires the explicit computation of the optimal f̂
conceptual advantage: the optimal basis Φ is the one that maximizes

E
[∥∥∥P f̂

∥∥∥2

HK

]
→ gives the idea of how to find the

optimal basis
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How to find the optimal estimation model

Imposition of additional hypotheses:

K (·, ·) is a Mercer Kernel:
continuous
symmetric
definite positive?

the input locations domain D is compact
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How to find the optimal estimation model - first
implications

1: K (·, ·) defines a compact linear positive definite integral operator:

(LK f ) (x ′) :=

∫
D

K (x ′, x) f (x) dx = Kf (x ′)

2: there are at most a numerable set of eigenfunctions φ (·):

Kφk (·) = λkφk (·) k = 1, 2, . . .
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How to find the optimal estimation model - second
implications

Theorem (Mercer’s)

with the previous hypotheses:

{λk} are real and non-negative: λ1 ≥ λ2 ≥ . . . ≥ 0

{φk (·)} is an orthonormal basis for the space

HK =

{
f ∈ L2 s.t. f =

∞∑
k=1

akφk

∣∣∣∣∣
∞∑

k=1

ak · ak

λk
< +∞

}

f1 =
∞∑

k=1

akφk f2 =
∞∑

k=1

bkφk ⇒ 〈f1, f2〉HK
=
∞∑

k=1

ak · bk

λk
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How to find the optimal estimation model

use the PCA idea to find the optimal basis Φ

⇒ optimal Φ is the set the first E eigenfunctions

note: E
[∥∥∥f̂ ∥∥∥2

HK

]
=
∞∑

k=1

λk ⇒


E
[∥∥∥P f̂

∥∥∥2

HK

]
=

E∑
k=1

λk

E
[∥∥∥Rf̂

∥∥∥2

HK

]
=

∞∑
k=E+1

λk

how to choose E : approximation error effect
∞∑

k=E+1

λk should be

comparable to the measurement noise
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Desired qualities of the approximated regression
algorithms

We are looking for an estimate living in a E -dimensional space

spanned by eigenfunctions φ1 (·) , . . . , φE (·), i.e.: f̂ =
E∑

k=1

akφk

Question: how to compute a1, . . . , aE?

Constraints:

we don’t want to compute the optimal estimate
M∑

m=1

cmK (xm, ·)

we don’t want to use the projection operator P
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New notation

measurement model:

ym =
+∞∑
k=1

akφk (xm) + νm → Y = Ca + e + V

definitions:

Y :=

 y 1

...
yM

 C :=

 φ1 (x1) . . . φE (x1)
...

...
φ1
(
xM
)

. . . φE
(
xM
)


a :=

 a1
...

aE

 e :=


∑+∞

k=E+1 akφk (x1)
...∑+∞

k=E+1 akφk
(
xM
)
 V :=

 ν1

...
νE


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Approximated learning - kind of approaches

cost-function:

data fitting → loss functions
not overfit → Tikhonov regularizer

f̂ = arg minef ∈HE
K

 M∑
m=1

(
f̃ (xm)− ym

)2

σ2 + γ
∥∥∥f̃ ∥∥∥2

HE
K


Bayesian:

put a prior on the eigenfunctions weights ak

find the best linear unbiased estimator:

â = cov (a,Y) var (Y)−1 Y
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Approximated learning - cost-function approach

f̂ = arg minef ∈HE
K

 M∑
m=1

(
f̃ (xm)− ym

)2

σ2 + γ
∥∥∥f̃ ∥∥∥2

HE
K


⇓

â =
(
σ2ΣaCTC + γIE

)−1
ΣaCTY

(
with Σa := E

[
aaT ] = diag (λ1, . . . , λE )

)
computations load: O (E 3 + E 2M + EM2) operations

representations size: E scalars
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Approximated learning - Bayesian approach

prior: ak ∼ N (0, λk)

â = cov (a,Y) var (Y)−1 Y

⇓

â = ΣaCT (CΣaCT + Σe + σ2IM
)−1 Y

(
with Σe := E

[
eeT ])

computations load: O (M3) operations

representations size: E scalars
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Approximated learning - comparisons of the
numerical solutions

cost-function approach:

â =
(
σ2ΣaCTC + γIE

)−1
ΣaCTY → O

(
E 3 + E 2M + EM2)

Bayesian approach:

â = ΣaCT (CΣaCT + Σe + σ2IM
)−1 Y → O

(
M3)

⇓

not equivalent!
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Eigenfunctions estimation
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Estimation of the eigenfunctions - introduction

Questions:

how to obtain the eigenfunctions φk (·) given the kernel K (·, ·)?
how to obtain the eigenfunctions φk (·) if we don’t know even
the kernel K (·, ·)?

Remark: we work in a subspace of L2:

K (·, ·) is continuous (already given since it is Mercer)

φk (·) is a continuous function (already given by Mercer’s
theorem)
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Estimation of the eigenfunctions given the kernel

Suppose K (·, ·) is given. Then if φ (·) is eigenfunction and λ is its
eigenvalue: ∫

D
K (x , x ′)φ (x ′) dx ′ = λφ (x)

we can approximate:∫
D

K (x , x ′)φ (x ′) dx ′ ≈
Q∑

j=1

K
(
x i , x j)φ (x j)wj

Linear system from which to estimate φ (·) and λ:

Q∑
j=1

K
(
x i , x j)φ (x j)wj = λφ

(
x i) i = 1, . . . ,Q
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Estimation of the eigenfunctions given the kernel

Q∑
j=1

K
(
x i , x j)φ (x j)wj = λφ

(
x i) i = 1, . . . ,Q

⇓ K (x1, x1) w1 · · · K
(
x1, xQ

)
wQ

...
...

K
(
xQ , x1

)
w1 · · · K

(
xQ , xQ

)
wQ


 φ (x1)

...
φ
(
xQ
)
= λ

 φ (x1)
...

φ
(
xQ
)


⇓

solve an eigenvalue-eigenvector problem

Note: choice of
{
x i
}
and {wi} can be critical

Damiano Varagnolo (DEI - UniPd) varagnolo@dei.unipd.it 36 / 56



Estimation of the eigenfunctions without knowing
the kernel

If K (·, ·) is unknown then:

1 estimate the covariance of the stochastic process and obtain Ĉ
2 assume the kernel is the estimated covariance, i.e. K (·, ·) = Ĉ
3 proceed as before

Note: choice of
{
x i
}
and {wi} is less critical than then the

estimation of Ĉ
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Example of eigenfunctions

Kernel for BIBO stable linear time-invariant systems:

K (x , x ′; β) =


exp (−2βx)

2

(
exp (−βx ′)− exp (−βx)

3

)
if x ≤ x ′

exp (−2βx ′)
2

(
exp (−βx)− exp (−βx ′)

3

)
if x ≥ x ′

0 0.25 0.5 0.75 1
−2

−1

0

1

2

time

ei
ge

nf
un

ct
io

ns

 

 

φ1 φ2 φ3 φ4
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Drawbacks

φk (·) cannot be computed from φk−1 (·) , . . . , φ1 (·)

⇓

can be computationally expensive if eigenfunctions have to be
estimated “on-the-fly”
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Distributed estimation
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Distributed approximated regression - Introduction

Our framework:

there is a zero-mean Gaussian process F of which we know the
covariance-kernel:

cov
(
F (x , t) ,F (x , t)T

)
(e.g.: wind blowing on a wind farm: x = [lat. lon. height] )

there are S sensors that sample the same realization f drawn
from F :

ym
s = f (xm

s , t
m
s , ) + νm

s
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Distributed approximated regression - Introduction

“our goal”: distributely estimate the realization f
our constraint: sensors can exchange a limited amount of information

1

2
3

x1

y1 x2

y2

x3

y3

our actual goal: find distributed algorithms and characterize their
performances (variance of the estimation error)
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Distributed estimation: first algorithm

First step: think to an effective estimator

simplificative hypothesis: sensors measure the same realization

x1

y1

x2

y2

x3

y3

Appreciable characteristics:

no common sampling grid

unknown time delays
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Distributed estimation with known delays

If we know the delays between the various functions we can:
1 (locally) shift the various data sets
2 (locally) compute the eigenfunctions weights as

k
3 (distributely) make average consensus on the weights as

k
4 (locally) shift back the representation

x1 x2 x3

y1 y2 y3

results in general not equivalent to centralized estimate!
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Distributed estimation with unknown delays

And if we do not know the delays?

first formulate a centralized optimization problem with a
cost-function based regularization:

− ln p
(
x1
1 , y

1
1 , . . . , x

M
S , y

M
S | τ1, . . . , τS , a1, . . . , aE

)
+ γ

E∑
k=1

a2
k

λk

then distributely solve it
Note: both minimizations use 2-steps gradient descents:

1 keep delays τs fixed and update the weights ak

2 keep the weights ak fixed and update the delays τs
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Gradient descents steps: intuition

How do the gradient descent steps work?

Weights ak update: (τs fixed)

1 join all the shifted data sets
2 compute f̂ as before f̂ (x)

x

y

Time delays τs update: (ak fixed)

1 shift optimally each data set f̂ (x)
x

y

Damiano Varagnolo (DEI - UniPd) varagnolo@dei.unipd.it 46 / 56



Gradient descents steps: intuition

How do the gradient descent steps work?

Weights ak update: (τs fixed)

1 join all the shifted data sets
2 compute f̂ as before f̂ (x)

x

y

Time delays τs update: (ak fixed)

1 shift optimally each data set f̂ (x)
x

y
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Simulations - distributed function estimation

time

wind strength (sensor A)

time

wind strength (sensor B)

process realization
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time

wind strength (sensor A)

time

wind strength (sensor B)

process realization
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Simulations - distributed function estimation

time

wind strength (sensor A)

time

wind strength (sensor B)

process realization
measurements
estimated signal (1st iteration)
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Simulations - distributed function estimation

time

wind strength (sensor A)

time

wind strength (sensor B)

process realization
measurements
estimated signal (500th iteration)
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Characterization of the distributed algorithms

these algorithms can be effective ⇒ worthy to be characterized

let’s start with the simplest case:

1 each sensor knows exactly S (n◦ of sensors)
2 no time-delay between measured signals
3 common input-locations grid among sensors

x1

y 1

x2

y 2

x3

y 3
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Simplest case: optimal distributed algorithm

there exists a distributed strategy equivalent to the centralized one:

1 (locally) make initial estimations:

âs = ΣaCT
(

CΣaCT + Σe +
σ2

S
IM

)−1

Ys

2 (distributely) make an average consensus on the various âs

Difference from pure local estimators: how to weight the
measurement noise:

âloc
s = ΣaCT (CΣaCT + Σe + σ2IM

)−1 Ys
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Guessed distributed strategy

hypothesis removal: sensors do not know S (n◦ of sensors)

↓

all sensors make the same guess: Sg (“g” = guess)

how distributed estimator changes?

distributed strategy:

1 (locally) make initial estimations:

âs (Sg ) = ΣaCT
(

CΣaCT + Σe +
σ2

Sg
IM

)−1

Ys

2 (distributely) make an average consensus on the various âs (Sg )
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Comparisons between estimators performances

performance “=” estimation error variance

centralized vs local: centralized is always better than local

centralized vs guessed distributed: centralized is always better than
guessed distributed (equal iff S = Sg , (guess is correct))

guessed distributed vs local: depends!!

Proposition
If Sg ∈ [1, 2 (S − 1)] then guessed distributed strategy is better than
local independently of the kernel, noise power, number of
measurements, etc.
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Current research on performances characterization

remove the common grid hypothesis and perform similar comparative
analyses between different algorithms of increasing complexity:

simple average consensus of locally optimal estimates

average consensus of local estimates with weighted measurement
noise covariance

local construction of pseudo-measurements on a common grid,
then use the pseudo-measurements as before
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Other research directions

distributed number of sensors statistical estimation: (locally)
generate ys from a known probability distribution
(distributely) combine these ys using a known
function f (·)
(locally) use ML, MMSE or MAP strategies to
estimate the actual number of sensors

distributed fault detection: (with faults on the measurements)
make a distributed estimation
make also a local estimation
compare the local and the distributed estimations
use statistical decision theory to locally say if there
are problems on the measurements
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Appendix
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Bias vs. Variance tradeoff

Edata set

[
(y − f (x))2

]
= Ex

[
Ey

[
(y − E [y | x ])2 | x

]]
+ Ex

[
Ey

[
(f (x)− E [f (x)])2 | x

]]
+ Ex

[
Ey

[
(E [y | x ]− E [f (x)])2 | x

]]
= Ex [var (y | x )]

+ Ex [var (f (x))]

+ Ex

[(
bias (f (x))

)2
]
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Riesz’ representation theorem

Definition (dual of an Hilbert space)

If HK is a Hilbert space, then the space of the continuous linear
functionals L : HK → R is called its dual and indicated with H∗K

Theorem (Riesz’ representation theorem)

If HK is a Hilbert space and H∗K is its dual, then

∀L ∈ H∗K ∃!g ∈ HK s.t. L (f ) = 〈g , f 〉 ∀f ∈ HK
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