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Problem statement

inputs: set of noisy measurements of a certain signal:

goal: estimate f(x)

y
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Parametric approach

assumption: known structure but unknown parameters

example: exponential:

f(x)=exp(—0x) 60,xeR"

goal: estimate 6 starting from the data set {(x™, y™)}
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Parametric approach - interpretation

assume we don’t know how the function is made: f (-) could be
“almost everything”

4

f (-) lives in an infinite dimensional space — there is infinite
uncertainity
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Parametric approach - interpretation

assume we don’t know how the function is made: f (-) could be
“almost everything”

4

f (-) lives in an infinite dimensional space — there is infinite
uncertainity

parametric approach: restrict the function to live in a known and
finite-dimensional space

= it adds an infinite amount of prior information
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Parametric approach - order estimation

Quite important to estimate the order (e.g. for ARMA models)

Usual methods:

@ Bayesian information criterion
@ Akaike information criterion

e Mallow's C,

general aim: find a trade-off between estimation error bias and
estimation error variance
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Nonparametric approach

assumption: signal f lives in a certain functions space:
f e Hk

goal: search the estimate f directly inside this space, in
general via:

f= arg min (Loss function (7, {y'"}) +7 H?H; )

feEHK

motivations: functional structure of f could be not easily managed
with parametric structures o
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Nonparametric approach - initial hypotheses

measurement model:

where:

e functional L, (f) is linear and continuous in f
@ measurement noise v is:

e zero-mean Gaussian

e i.id.

e independent on f and on L, (-)

OfEHK o

@ Hy is an infinite-dimensional Hilbert space
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From infinite to finite dimensionality

Theorem (Representer theorem - hypothesis)

Given the cost-function minimization problem:

f= arg?rQLnKQ (Ll <?> oy lm <?) Yo yM,

assume:

2
)
Hk

o L, (f) are linear and continuous in f

e Q(-) is strictly increasing in H?H
Hk

@ there exists a solution to

arg min Q (") |

feHk
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From infinite to finite dimensionality

Theorem (Representer theorem - conclusion)

... then the solution is on the form
R M

F()=> c"gm(")
m=1

with:

@ (using Riesz' representation theorem)

L () = (gm: F)nx

@ span{gi,...,8m) is at most M-dimensional
e weights c™ depend on Q (-) (will be derived later)

Damiano Varagnolo (DEI - UniPd) varagnolo@dei.unipd.it 11 / 56



Usual cost functions

with quadratic losses:

o) -5 1)

2
1 ik

m=

with Vapnik's e-insensitive losses:

Q(F) =S v (Feem) .y |

2
Hk

where:
0 if ‘?(X”’)—y’"‘ <e
‘?(X’”) — y’"‘ — € otherwise

% (? (x™) ,y’") =
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Reproducing kernel Hilbert spaces

Definition
An Hilbert space H is said to have a reproducing kernel if there
exists:

K(,):DxD—-M

such that:
Fx) = (), KX D
(called the reproducing property)

Theorem

If the reproducing kernel K (-, ) exists then it is unique
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How to compute the optimal estimate

M
Representer theorem = ()= Z c"gm(-)
m=1

Reproducing kernel property = gm(-) =K([x™,")

Together = ?() = Z c"K (x™, )
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Numerical solution with quadratic loss functions

If:
- 2
- M (f(Xm) —ym> 2
f = arg min g 5 —l—”ny
feHK m=1 g 7_(K
then:
-1
ct K (x*, xb) K (xt, xM) y!
= : +vIm
cM K (XM,Xl) K (XM,XM) yM
o
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Numerical solution in Bayesian frameworks

first hypothesis: f is a realization of a zero-mean Gaussian process
with covariance K:

cov (f (x™), f (x”)T> — K (x™, x")

second hypothesis: f is independent on the measurement noise

Bayes estimator:  f = cov (f,Y)var (Y)Y Y=

It is equal to the quadratic cost-function based estimator
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Drawbacks
R M
Optimal estimate: f()= Z c"K (x™,-)
m=1

1° feature: must invert (K +~v/y) ™"

2° feature: must store [c,..., cM]

Possible problems: if M is big then it could be:
e computationally hard to find (invert an M x M matrix)

@ hard to store or communicate (representation can be quite big) o
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Approximated non parametric regression -

introduction

need for reduction in computational complexity, i.e.

@ need estimation algorithms with an O (-) smaller than O (M?)

@ need representations using less than M scalars

4

must find:

@ an E-dimensional model with E < M such that:
M:=[p1(-),. ., 0e ()JRE M C Hg PY

@ how to map the data set {X, )} into M
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Notation

Extension of finite linear algebra operations:

flg ::/f(x)Tg (x) dx

Af (X)) == /A (x',x) f (x) dx

fTAg—//f g (x) dx'dx
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How to map data sets into the estimation model

assume basis ® 1= [¢1(-), ..., ¢ ()] is given

If the inner product P of Hy is given then:

@ the projection operator P is:
P=0(0TPO) TP
@ the remainder operator R is given by:
R=I-P
@ P and R are such that:
IF1l5e, = 1PFlg, + IRFII5,,  VF € Hi
varagnolotdei .unipd. it 21/ 56



How to map data sets into the estimation model

Given the projection operator P,
if optimal estimate in Hy : ?() = Z c"K (x™,-)
then optimal estimate in M : Pf(-)

drawback: still requires the explicit computation of the optimal f

conceptual advantage: the optimal basis @ is the one that maximizes
E {pr‘

optimal basis
varagnolo@dei.unipd.it 22 / 56
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How to find the optimal estimation model

Imposition of additional hypotheses:

e K(-,-)is a Mercer Kernel:

e continuous
e symmetric
o definite positive*

@ the input locations domain D is compact
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How to find the optimal estimation model - first

implications
1: K(-,-) defines a compact linear positive definite integral operator:

(LiF) (¥') = /DK(X',x)f(X) dx = KF (x)

2: there are at most a numerable set of eigenfunctions ¢ (-):

Kow (-) = Mo (+) k=1,2,...
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How to find the optimal estimation model - second
implications

Theorem (Mercer's)

with the previous hypotheses:

o {\«} are real and non-negative: \y > Xy > ... >0

o {¢k(-)} is an orthonormal basis for the space

Za" a'k<+c>o}

Hy = {f.€A£2 s.t. f'—-jz:ak¢k

o= ad H=Y bd = (fh)y Z"k
k=1 k=1

k=1
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How to find the optimal estimation model

use the PCA idea to find the optimal basis ¢

= optimal @ is the set the first E eigenfunctions

— 2 E
E||PF ] =3 M
L i k=1

note: [E [H?’

;K:| :Z)\k = K

k=1

- -
E HRf } - A
. L i k=E+1

o
how to choose E: approximation error effect Z A should be o
k=E+1
comparable to the measurement noise
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Desired qualities of the approximated regression

algorithms

We are looking for an estimate living in a E-dimensional space

E

spanned by eigenfunctions ¢ (), ..., ¢e (), i.e: f = Z ak Pk
k=1

Question: how to compute ay, ..., ag?

Constraints:

M
@ we don't want to compute the optimal estimate Z c™K (x™)-)
m=1 )

@ we don't want to use the projection operator P
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New notation

measurement model

Zakgbk + ™ — y:Ca+e+V
k=1
definitions:
% o1 (x) .. o (xY)
yM 01 (XM) .. O (XM)
a S E1 Ak (x)
a:= : e = : V=
2 >l akdk (xM)
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Approximated learning - kind of approaches

cost-function:

e data fitting — loss functions

@ not overfit — Tikhonov regularizer

- 2

~ (f (x™) — ym) 12

f = arg min 5 + ,ny’
feHE \ 1 o Hi

Bayesian:

@ put a prior on the eigenfunctions weights aj
o find the best linear unbiased estimator:

a=cov(a,))var (y)‘l NY%
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Approximated learning - cost-function approach

a= (0L CTC+le)  Z.CTY

(with T, :=E[aa’] = diag(\1,...,\g))
computations load: O (E® + E?M + EM?) operations

representations size: E scalars
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Approximated learning - Bayesian approach

prior: ax ~ N (0, \¢)

a = cov(a,))var ()7)_1 y
U
3=.CT (CT.CT + 5+ 0%Iy) Y

(with E¢:=E[ee’])
computations load: O (M?3) operations

representations size: E scalars
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.
Approximated learning - comparisons of the

numerical solutions

cost-function approach:
a=(0?5,CTCHle) " 5.CTY  —  O(E*+EM+ EM?)
Bayesian approach:
3= CT (CECT+Te+0%) Y —  O(M)

4
not equivalent! ®
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Estimation of the eigenfunctions - introduction

Questions:

@ how to obtain the eigenfunctions ¢y (-) given the kernel K (-,-)?

@ how to obtain the eigenfunctions ¢y (-) if we don't know even
the kernel K (-,-)?
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Estimation of the eigenfunctions - introduction

Questions:

@ how to obtain the eigenfunctions ¢y (-) given the kernel K (-,-)?

@ how to obtain the eigenfunctions ¢y (-) if we don't know even
the kernel K (-,-)?

Remark: we work in a subspace of £?:

e K (-,-) is continuous (already given since it is Mercer)

@ ¢ (+) is a continuous function (already given by Mercer's
theorem) ®
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Estimation of the eigenfunctions given the kernel

Suppose K (-, -) is given. Then if ¢ () is eigenfunction and A is its
eigenvalue:

/D K (x,x") ¢ (x") dx" = Ao (x)

we can approximate:

Q

/DK(X,X')gzﬁ(x') dx' ~ ZK(Xi,Xj) ¢ (x') w;

Jj=1

Linear system from which to estimate ¢ (-) and \:

Q
ZKXXJ )M/j:)\gb(x") i=1,...,Q [
j=1

Damiano Varagnolo (DEI - UniPd)
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Estimation of the eigenfunctions given the kernel

Q
ZK(xi,xj)¢(xj)v1/J-:/\¢(xi) i=1,...,Q
j=1
4
Kt x)w - K (x5 x9) wo o (x1) o (x1)
: : : =A :
K (XQ,Xl) wp - K (XQ,XQ) wQ 10} (XQ) 10} (XQ)
4

solve an eigenvalue-eigenvector problem
Note: choice of {x'} and {w;} can be critical

Damiano Varagnolo (DEI - UniPd) varagnolo@dei.unipd.it 36 / 56



Estimation of the eigenfunctions without knowing

the kernel

If K(-,-) is unknown then:

@ estimate the covariance of the stochastic process and obtain C
@ assume the kernel is the estimated covariance, i.e. K(-,-) = c

© proceed as before

Note: choice of {x'} and {w;} is less critical than then the

estimation of C °
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Example of eigenfunctions
Kernel for BIBO stable linear time-invariant systems:

eXP(;ZgX) <exp (_6)(/) . eXP(;ﬁX)) if x < x'

K (val; /6) - , ,
eXp(—22ﬁX) (exp (—ﬁx) _ eXP(;ﬁX )) if x > x’

0
c
i)
©
c
=}
c
]
2
(]
2 J .
0 0.25 0.5 0.75 1
time
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Drawbacks

o« (+) cannot be computed from ¢ 1 (+),..., 01 (")

4

can be computationally expensive if eigenfunctions have to be
estimated “on-the-fly"
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Distributed approximated regression - Introduction

Our framework:

@ there is a zero-mean Gaussian process F of which we know the
covariance-kernel:

cov (f (x, 1), F (x. t)T>

(e.g.: wind blowing on a wind farm: x = [lat. lon. height] )

@ there are S sensors that sample the same realization f drawn
from F: [
- f( X5 s 7)+ V;n
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Distributed approximated regression - Introduction

“our goal™: distributely estimate the realization f

our constraint: sensors can exchange a limited amount of information

, | =,

®, ’
oo

£

3
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Distributed approximated regression - Introduction

“our goal™: distributely estimate the realization f

our constraint: sensors can exchange a limited amount of information

Y2

s

2

n @

r o]

; 1 /f'"‘\' )

3

our actual goal: find distributed algorithms and characterize their
performances (variance of the estimation error)
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Distributed estimation: first algorithm

First step: think to an effective estimator

simplificative hypothesis: sensors measure the same realization

31 Y2 y3
[J [ J
[ ]
X1 /ﬁ'\ X2 /(_f‘\' X3
Appreciable characteristics:
@ no common sampling grid o

@ unknown time delays
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Distributed estimation with known delays

If we know the delays between the various functions we can:

locally) shift the various data sets

@ (
@ (locally) compute the eigenfunctions weights a;
© (distributely) make average consensus on the weights aj
Q (locally) shift back the representation
N Y2 y3
: °
00 .‘. ... o ee o
@ :
= X1 X2 X3
[
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Distributed estimation with known delays

If we know the delays between the various functions we can:

@ (locally) shift the various data sets
@ (locally) compute the eigenfunctions weights a;
© (distributely) make average consensus on the weights aj
Q (locally) shift back the representation

X1 X2 X3
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Distributed estimation with known delays

If we know the delays between the various functions we can:

@ (locally) shift the various data sets
@ (locally) compute the eigenfunctions weights a;
© (distributely) make average consensus on the weights aj
Q (locally) shift back the representation

b4 32 Y3

~ ~N

X1 X2
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Distributed estimation with known delays

If we know the delays between the various functions we can:

@ (locally) shift the various data sets
@ (locally) compute the eigenfunctions weights a;
© (distributely) make average consensus on the weights aj
Q (locally) shift back the representation

b4 32 Y3

~ ~ ~

1
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Distributed estimation with known delays

If we know the delays between the various functions we can:
@ (locally) shift the various data sets

@ (locally) compute the eigenfunctions weights a;

© (distributely) make average consensus on the weights aj

Q (locally) shift back the representation

i Y2 ¥3

[~

1 7
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Distributed estimation with known delays

If we know the delays between the various functions we can:

@ (locally) shift the various data sets
@ (locally) compute the eigenfunctions weights a;
© (distributely) make average consensus on the weights aj
Q (locally) shift back the representation

i Y2 ¥3

1 2

[ .

3
L 4

results in general not equivalent to centralized estimate!

Damiano Varagnolo (DEI - UniPd) varagnolo@dei.unipd.it 44 / 56



Distributed estimation with unknown delays

And if we do not know the delays?

first formulate a centralized optimization problem with a
cost-function based regularization:

E »
11 M M )
_Inp(xl,yl,...,xs , Ys |7'1,...,75,al,...,ag) +72)\—
k=1 "k
then distributely solve it
Note: both minimizations use 2-steps gradient descents:
© keep delays 7 fixed and update the weights aj [

@ keep the weights a, fixed and update the delays 75
varagnolo@dei.unipd.it 45 / 56



Gradient descents steps: intuition

How do the gradient descent steps work?

Weights a, update: (7 fixed)

Time delays 75 update: (ax fixed)

Damiano Varagnolo (DEI - UniPd) varagnolo@dei.unipd.it 46 / 56



Gradient descents steps: intuition

How do the gradient descent steps work?

<

Weights a, update: (7 fixed) o ®

00y ®® 0o

© join all the shifted data sets » °
[ ]

Time delays 75 update: (ax fixed)
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Gradient descents steps: intuition

How do the gradient descent steps work?

<

Weights a, update: (7 fixed)

© join all the shifted data sets

@ compute f as before

Time delays 75 update: (ax fixed)
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Gradient descents steps: intuition

How do the gradient descent steps work?

© join all the shifted data sets

Weights a, update: (7 fixed) Y o o
@ compute f as before |
[

Time delays 75 update: (ax fixed)

© shift optimally each data set
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Gradient descents steps: intuition

How do the gradient descent steps work?

Weights a, update: (7 fixed) Y o o
© join all the shifted data sets o K
? . F ()
@ compute f as before N
[
y
Time delays 75 update: (ax fixed)
© shift optimally each data set /f\(x) ®
X

[
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Simulations - distributed function estimation

wind strength (sensor A)

| time

wind strength (sensor B)

| time

process realization
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Simulations - distributed function estimation

wind strength (sensor A)

st [ e RS- eSO

| time
wind strength (sensor B)
»
X xx MPeK SEENSSURE" calite SN OUS
x
-3 .
i time
process realization
X33 %% measurements ®
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Simulations - distributed function estimation

wind strength (sensor A)

eSS R RSP e R SATRERSE

| time
wind strength (sensor B)
5.
23 s DQPOFN nnnnnnn .x.....x..x:}x %-*m.
3 3
¥ .
i time
process realization
X33 %% measurements ®

---------------------- estimated signal (1° iteration)
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Simulations - distributed function estimation

wind strength (sensor A)

| time
wind strength (sensor B)
SECTOF VN Pr— g f“m.xxm

X
= .

i time

process realization
X322 x % measurements ®

---------------------- estimated signal (500" iteration)
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-
Characterization of the distributed algorithms

these algorithms can be effective = worthy to be characterized

let's start with the simplest case:

@ each sensor knows exactly S (n° of sensors)
© no time-delay between measured signals

© common input-locations grid among sensors

vt y? y?
[ ] ° [ ]
° S-e ® S o °
j x1 x2 x3
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Simplest case: optimal distributed algorithm

there exists a distributed strategy equivalent to the centralized one:

@ (locally) make initial estimations:

2 -1
3, =y,C7 (CZaCT LY.+ (;/M) V.

@ (distributely) make an average consensus on the various as

Difference from pure local estimators: how to weight the
measurement noise:

s _=

3% = 5, CT (CTaCT + Te+0%In) " Vs
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-
Guessed distributed strategy

hypothesis removal: sensors do not know S (n° of sensors)

!

all sensors make the same guess: S; (g’ = guess)
how distributed estimator changes?

distributed strategy:
@ (locally) make initial estimations:

2 -1
/a\s (Sg) :ZaCT (CZaCT+Ze+g/M) Vs o
g

@ (distributely) make an average consensus on the various as (S;)
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Comparisons between estimators performances
performance “=" estimation error variance

centralized vs local: centralized is always better than local

centralized vs guessed distributed: centralized is always better than
guessed distributed (equal iff S = S, (guess is correct))

guessed distributed vs local: depends!!

Proposition

If Sg € [1,2(S — 1)] then guessed distributed strategy is better than
local independently of the kernel, noise power, number of
measurements, etc.
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Current research on performances characterization

remove the common grid hypothesis and perform similar comparative
analyses between different algorithms of increasing complexity:

@ simple average consensus of locally optimal estimates

@ average consensus of local estimates with weighted measurement
noise covariance

@ local construction of pseudo-measurements on a common grid,
then use the pseudo-measurements as before

Damiano Varagnolo (DEI - UniPd) varagnolo@dei.unipd.it 52 / 56



Other research directions

distributed number of sensors statistical estimation: @ (locally)
generate ys from a known probability distribution
o (distributely) combine these y; using a known
function f (-)
o (locally) use ML, MMSE or MAP strategies to
estimate the actual number of sensors
distributed fault detection: (with faults on the measurements)
@ make a distributed estimation
@ make also a local estimation
@ compare the local and the distributed estimations
@ use statistical decision theory to locally say if there @
are problems on the measurements
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Bias vs. Variance tradeoff

Baataser | (v = £ ()] = Ex [E, [(y - E[y|x]2|x}]
+ Ed[E, [(f () —E[f () |x]]
+ E[E, (E[y [ X]=E[f () | x]]
— Exfvar(y | x)]
B [var ( (x))]
+ E, {(blas(f( )))2]




Riesz' representation theorem

Definition (dual of an Hilbert space)

If H is a Hilbert space, then the space of the continuous linear
functionals L : Hx — R is called its dual and indicated with Hj

Theorem (Riesz’' representation theorem)

If Hi is a Hilbert space and Hj, is its dual, then

VL e H) g€ Hist. L(f)= (g, f) Vf e Hgk
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