Distributed size estimation

in anonymous networks

Damiano Varagnolo, Gianluigi Pillonetto, Luca Schenato

Department of Information Engineering, University of Padova

February 9th, 2012

—) DIPARTIMENTO
= DI INGEGNERIA
—  DELLINFORMAZIONE

MU e

varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation February 9th, 2012 1/ 47



- |
Table of Contents

@ Introduction

© General estimation scheme
© Continuous distributions
@ Discrete distributions

© Robustness

© Future directions

varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation

February 9th, 2012

MU e

2 /a7



Table of Contents

© Introduction

varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation

February 9th, 2012

MU e

3 /47



Focus of this talk:

distributed estimation
of the size S of a network

— i.e. let the agents know how many they are
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Introduction

Motivations (2/3): smart buildings management
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Motivations (3/3): estimation purposes

(also S~ may be interesting!!)
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Introduction

Problem definition

hypotheses
@ S := network size
(O @ S deterministic and constant in time
o9 -0 . .
. Q7| e agents have limited computational /
o @& 0 . g
> Ty memory / communication capabilities
o -0 @ network is anonymous
(no IDs or IDs not assured to be unique)
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hypotheses
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@ S := network size
@ S deterministic and constant in time

@ agents have limited computational /
memory / communication capabilities

e network is anonymous

(no IDs or IDs not assured to be unique)

A

Goal: develop a distributed estimator
S of S satisfying the constraints
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Introduction

Literature review

network size estimation = not a new problem!!
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Introduction

Literature review

network size estimation = not a new problem!!

Deterministic scenario: theoretical limit for anonymous networks

3 algorithm (with bounded average bit complexity) guaranteed to
return the correct answer for every (finite) execution

Cidon, Shavitt (1995), Information Processing Letters

Stochastic scenario: some existing approaches
@ random walk strategies

@ capture-recapture strategies
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Introduction

Random walks

[§ Massoulié, Le Merrer, Kermarrec, Ganesh (2006)
Peer counting and sampling in overlay networks: random walk methods

ACM symposium on Principles of distributed computing
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Introduction

Capture-recapture

[§ Seber (1982)

The estimation of animal abundance and related parameters
London: Charles Griffin & Co.
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Introduction

Capture-recapture

[§ Seber (1982)
The estimation of animal abundance and related parameters
London: Charles Griffin & Co.

Algorithm

© generate N seeds
© propagate them
© capture and infer

@ variance of the error:
o # of captured seeds
(polynomially)
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Our algorithm

several peculiarities
w.r.t. existing literature

o full parallelism — every agent will have an estimate at the same time
@ easily implementable in anonymous networks
@ nice mathematical properties

the idea: generate random numbers — combine
them with consensus — exploit statistical inference

Cohen (1997), Journal of Computer and System Sciences, =

Size-estimation framework with applications to transitive closure and reachability =
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General estimation scheme

Block representation of our strategy

local distributed local

Y11
Y21

Ysi1

Y12
Y22
Ys,2

Yi,m
Vo.M

Ys.m

MU e

varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation February 9th, 2012 14 / 47



General estimation scheme

Block representation of our strategy

local distributed local

Y11
Y21

Ysi1

Y12
Y22
Ys,2

Yi,m
Vo.M

Ys.m

every agent i generates a M-tuple {y;1,...,¥im}, Yim~p(*)
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General estimation scheme

Block representation of our strategy

local distributed local

Y11
Y21

Ysi1

Y12
Y22
Ys,2

Yi,m
Vo.M

Ys.m

the S-tuples {y1.m,...,¥s,m} are converted into a scalar f,, through F
(e.g. F = average, F = max)
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General estimation scheme

Block representation of our strategy

local distributed local

Y11
Y21

Ysi1

Y12
Y22
Ys,2

Yi,m
Vo.M

Ys.m

the M-tuple {f1,...,fm} is converted into an estimate S through W
(e.g. ¥ = Maximum Likelihood)

varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation February 9th, 2012 14 / 47

MU e



General estimation scheme

Block representation of our strategy

local distributed local

Y11
Y21

Ysi1

Y12
Y22
Ys,2

Yi,m
Vo.M

Ys.m

MU e

N2
cost function:  J(p,F,V):=E [(5 — 5) ]
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Algorithm (M
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with p = N(0,1)
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General estimation scheme

An example

i=1
Algorithm (M = 1):
S -
1 f’,’— ’
- = i O '
local generation 27 ;y N K L
with p = AT(0,1) s Basedy
— lz o ST
.y3 S / .yl ~\\\\\
i=1 O

F= average consensus

1S
Y4_>§;Yi
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General estimation scheme

An example

Algorithm (M

1):

local generation SRNY /
with p = N(0,1)

L0 Yae ~N(0,3)
Yave ~ N (0,5) O77
e
F — average consensus 1
Yave ™~ N (07 §)
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General estimation scheme

An example

Algorithm (M = 1):

local generation
with p = N(0,1)

F = average consensus
Y = Maximum Likelihood S=y2
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General estimation scheme

A formidable infinite-dimensional problem

local distributed local

Y11
Y21

ys1

Y12
Y22
Ys,2

Yi,m
Yo.m

Ys,m

MU e

i =77 —el(s_3 1
argprmnllJ(p,F,\U) 27 J(p,F,V¥): m[(s S)
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General estimation scheme

Our case studies

Case 1:

local distributed local

yi1 ——
Yo1 ——»
. F = ave.

Ys1 ——»

fi

Y10 ——
Y22 ——

Gaussian F = ave.

distribution Y52 ——

YiM ———]
YoM ——

F = ave.

YsS M ———»
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General estimation scheme

Our case studies

Case 2:

local distributed local

Yil1 —
Yo1 ——»

F = max

Ys1 ——»

fi

Y10 ——

absolutely
continuous
distribution

F = max

Y22 ———»

Ys2 ———»

YiM ———]

YoM ——

F = max

YsS M ———»
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General estimation scheme

Our case studies
Case 3:

local distributed local

yi1 ——
Yo1 ——»
. F = ave.

Ys1 ——»

fi

Y10 ——
Y22 ——

Bernoulli F = ave.

distribution Ys2 ——»

YiM ———]
YoM ——

F = ave.

YsS M ———»
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General estimation scheme

An historical case study

The German Tank problem

f’ infer tanks production from serial numbers analysis
" (June 1940 — September 1942)

intelligence | statisticians actual
1400 256
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Continuous distributions

Case 1: (p Gaussian) + (F = average) + (W = ML)

Y1 m}
M, )< {y2 m} }(F — ave. COﬂS-)—>
{YS m} <

S
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- Cermems disfhmies |
Case 1: (p Gaussian) + (F = average) + (V = ML)

{yl m}
/l, )< Vomk (F = ave. cons.)—>
}/5 m} 3‘

Results: (1 /2) (independent of y and o)

( Z Yave m) (MS)_lg ~ Inv — Xz(M)

o]EE—L a 3\;5 Ng
S| T mM—2 VTS T .

v
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+ (V= ML)

Case 1: (p Gaussian) + (F = average)

{yl m}
ﬁ% ]{ Vomk (F = ave. cons.)—>
}/5 m} 3‘

Results: (2 / 2)
S-1  and S-1is MVUE for S~!

-1

° (S) =51
o for generic regular p(-), ST = lz LN 0 1
g g p ’ S .yl 75

implication: performances tend to become independent of p(-)

)
o -
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Case 2: (p continuous) + (F = max) + (VW = ML)
{yl,m}

absolutely {yo.m}

continuous

distribution

F = max cons.)—*
{ys.m} S
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Case 2: (p continuous) + (F = max) + (VW = ML)
{yl,m}

absolutely {yo.m}
continuous F = max cons.)—>
S

distribution

{ys,m}
Results:  independent of p(-)

0 5= (ATM, —log(Blmenl))  (MS)S ~Inv—(M,1)

M S-S\ 1 |
=1 T | * (x5 w.r.t. average)

Wl W)

o~ _1 —_— —
° (s) —S1 and S1isMVUE for S .

v
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Continuous distributions

A graphical summary

J(p, F = {ave.,max} , V)

—

p
(abs. cont. dist.)
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(abs. cont. dist.)
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Continuous distributions

A graphical summary
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Continuous distributions

A graphical summary
J(p, F = {ave.,max} , V)
7%’\ v
p

(abs. cont. dist.)

J(p, F = max, ¥ = ML) J(p, F =ave,¥W = ML)

7777777
777727777

L u N

is it possible to do better using discrete distributions?
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Example with Bernoulli trials

disclaimer: finite precision will be handled later
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Discrete distributions

Example with Bernoulli trials

i=1
Algorithm (M = 1):
_ Yo = Zy, o/

local generation TRENY / 1S

Wlth P = 8(05) |\ - - = f
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=1 \O
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Discrete distributions
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Algorithm (M

local generation
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Discrete distributions

Example with Bernoulli trials

2
Yave = g
Algorithm (M = 1): o
2 PP
. Yave = = O )
local generation 5 o /
. \ S ) 2
with p = B(0.5) ) ' O Yave =
y -7 \ 5
Yave g O‘~\\ "
Ne)
F = average consensus 5
Yave = g
idea: estimator S = denominator!
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Discrete distributions

Example with Bernoulli trials - insights
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Discrete distributions

Example with Bernoulli trials - insights

2 ’—”,’ I/
Yave = = OC )/
6 RN ,
\ \\ 7 2
L0 Yave =
- ave
2 é):" AN 6
z N
Yave 6 ~\\\\\ R
O .

varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation

February 9th, 2012

MU e

26 / 47



Discrete distributions

Example with Bernoulli trials - insights
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Discrete distributions

Example with Bernoulli trials - insights

1
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0
Yave = (l)::— ,'I
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\O\:\ 1
1 \\O Yave = g
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Discrete distributions

Example with Bernoulli trials - insights

1
Yave = g - .
o is denominator a
1 good estimator?
Yave = § (?:\\ ,'I
\ \\ 1 1
1 ‘\ /’rI?\\ yave -
Yave = O‘:\\ " \\
O 1
1 O Yave = g
Yave = g

assumption: agents compute only coprime representations
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Statistical characterization of the estimator

Proposition
Hypotheses:
o yi~B(p)
S ~
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Statistical characterization of the estimator

Proposition
Hypotheses: Thesis:
o yi ~ B(p) S — ML estimate of S for
s ~
1 k .
O Yove = — Z yi = = coprime Ve p
ST S
" 0.2
- o.{ |
B 07 : I , , !
0 5 10 15 20 s 9
S 4 S =
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Discrete distributions

Intuition behind the ML property

Ockham's razor  (william of Ockham, c. 1288 - c. 1348)

“select from among competing hypotheses the
one that makes the fewest new assumptions’

MU e
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Discrete distributions

An historical and related question

The Newton-Pepys problem (isaac Newton, 1643 - 1727; Samuel Pepys, 1633 - 1703)

Which one is the most likely event?

© have at least 1 six when rolling 6 dice
© have at least 2 sixes when rolling 12 dice

© have at least 3 sixes when rolling 18 dice

Our result:

P {have exactly k sixes when rolling kN dice

decreases when increasing k

o -
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The nonlinear behavior of the estimator

assumption:

S known,
S=6

- o o o o o 9
0 1 L 1 5 1
6 3 2 6
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Discrete distributions

The nonlinear behavior of the estimator

assumption:
S known,
S$=6
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Discrete distributions

The nonlinear behavior of the estimator

assumption:

S known,

S=6

N w1 oy 0y

7 y ave

—_
O\li—l‘
wim———X
NI-X—X
win——X
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Discrete distributions

The nonlinear behavior of the estimator

S ® o o o o o
6
5
assumption: 4
S known,
S=7 3
2
1 ’JX(
SR S W S S Yave @
0 1 2 3 4 5 6 1 2
7 7 7 7 7 7 =
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Discrete distributions

Connections with number theory

Definition: totative of an integer S
a positive integer k < S which is also relatively prime to S J
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Connections with number theory
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N—

a positive integer k < S which is also relatively prime to S

Definition: Euler’'s ¢-function
#(S) := number of totatives of S J
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Discrete distributions

Connections with number theory

Definition: totative of an integer S
a positive integer k < S which is also relatively prime to S

N—

Definition: Euler’'s ¢-function
#(S) := number of totatives of S J

for our purposes, ¢(S) = number of good values

wRY—X
NI=—X
winX—X

MU e
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Totatives' characteristics (1/2)

Distribution: =~ uniform on N
S =10: B } } } : T (40%)
S =50: Wﬁo (40%)
S = 100: (WWHHHWO (40%) |
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very important: Bernoulli's p has not key roles
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Totatives' characteristics (2/2)

How many?
S @ > 0.15
#(S) > 3 ie. S
o 10
e |oglog5+|og|og5 VS €2, 101

(v =~ 0.577, Euler-Mascheroni constant)
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Totatives' characteristics (2/2)

How many?
S @ > 0.15
#(S) > 3 ie. S
e’ loglogS + ———— V'S € [2, 101]

log log S

(v =~ 0.577, Euler-Mascheroni constant)

an other important result:

at least 15% of the plausible y,,. are good ones

varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation February 9th, 2012

MU e

33 / 47



Totatives' characteristics (2/2)

How many?
S @ > 0.15
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e’ loglogS + ———— V'S € [2, 101]

log log S

(v =~ 0.577, Euler-Mascheroni constant)

an other important result:

at least 15% of the plausible y,,. are good ones

only 15%77
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Discrete distributions

Extension to the multiple-generations case

yi: 01 01

ys; 0 0 1 0

yo., 1 1 00

ys: 0 0 1 1
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yo., 1 1 00
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Discrete distributions

Extension to the multiple-generations case

y: 01 01101000
y,, 1.11 0 01 1101
y;z> 001 00 O0O0T1T1O0
y., 11001 11111
Yy« 0 0 1 1 1 0 0 1 0 0

component-wise consensus
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Discrete distributions

Extension to the multiple-generations case

yi: 01 01 1

y;; 0 0 1 0 0

y: 0 0 1 1 1

S1 5 S5 5 S
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Discrete distributions

Extension to the multiple-generations case

Yi

Yo

Y3

Yy

Ys:
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Discrete distributions

Intuition behind the LCM(+) operation
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Discrete distributions
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Discrete distributions

Intuition behind the LCM(+) operation
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Discrete distributions

Intuition behind the LCM(+) operation

11
23
.0
1L LCM(2,3) =
1l o , M(2,3) =6
23 T/
Lo 11
11 /13\55
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Discrete distributions

Estimation performance

Main result
(0.5)SumM < p [5 £S5, M] < (0.85)M
1 e g ——— -
— i ’
§ st M M
. 1076 1 ~*~~~‘ Y— e (085)
% e (0.5)%==xM
\H\ ~~'~ Y A 5 —
10712 | A
& - 5 — 11
R Thls el S=12
1077 : . %4 §5=19
1 2 3 5 °®
M 2
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Robustness issues

need to take into account several non-idealities

@ quantization errors

@ consensus errors

robustness properties of the various
strategies are very different
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Robustness: Gaussian + average

Assumptions and definitions
o it = (1+ 0yt + A

~

AS . ] ]
@ — := relative error btw. ideal case and actual estimate
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Robustness: Gaussian + average

Assumptions and definitions
o it = (1+ 0yt + A

~

AS . ] ]
@ — := relative error btw. ideal case and actual estimate

First-order approximation

AS

< 20max + 2V'S Apmax

A\
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Robustness: Gaussian + average

Assumptions and definitions
o it = (1+ 0yt + A

~

AS . ] ]
@ — := relative error btw. ideal case and actual estimate

First-order approximation

AS

< 20max + 2V'S Apmax

A\

well posed map
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Robustness: absolutely continuous dist. + max

Assumptions and definitions
o it = (1+ 0yt + A

~

AS . ] ]
@ — := relative error btw. ideal case and actual estimate

First-order approximation

AS

S SO0max + SAmax

~
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Robustness: absolutely continuous dist. + max

Assumptions and definitions
o it = (1+ 0yt + A

~

AS . ] ]
@ — := relative error btw. ideal case and actual estimate

First-order approximation

AS

S SO0max + SAmax

~

tradeoff robustness vs. performance
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Robustness: Bernoulli + average

Extremely non-linear map (requires Sy,ax):

20

15
ST
5

0
0 01 02 03 04 05 06 07 08 09 1

Yave
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Robustness: Bernoulli + average

Extremely non-linear map (requires Sy,ax):

20

15
ST
5

0

r T T T T T T T T

0 01 02/ 03 04 05 06 07 08 09

Yave

—

big error = unreliable estimates

[ small error = insensitivity ]

| ( ill posed map
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Robustness: Bernoulli + average

Extremely non-linear map (requires Sy,ax):

20

15
ST
5

0

0 01 02/ 03 04 05 06 07 08 09 1

Yave

minimal distance tietween stems

0.8 52

max
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Future directions

Two main directions:

© dynamic case
(continuously run the previous algorithms and tie the results

— forthcoming at 51st CDC)
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Future directions

Two main directions:

© dynamic case
(continuously run the previous algorithms and tie the results

— forthcoming at 51st CDC)

© max-consensus based networks structure identification
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structure identification with max-consensus

protocol: each agent communicates once per epoch

time

varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation February 9th, 2012

MU e

44 / a7



structure identification with max-consensus

protocol: each agent communicates once per epoch

time

©)

varagnolo@dei.unipd.it (DEI - UniPD) Distributed size estimation February 9th, 2012

MU e

44 / a7



structure identification with max-consensus

protocol: each agent communicates once per epoch

time
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structure identification with max-consensus

protocol: each agent communicates once per epoch

time
o {ym(t)}
e 0O X[ X[ X|[X|X]| t=0
® o
X | X X t=1
e} O O
@)

o © .
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structure identification with max-consensus

protocol: each agent communicates once per epoch

time

o {ym(t)}

e 0O X[ X[ X|[X|X]| t=0
= o
X | X X| t=
o) ) ®) X | X =
X x| t=3
O
o © .
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Future directions

structure identification with max-consensus

protocol: each agent communicates once per epoch

time

o {ym(t)}

° O ®) X | X | X|X|X| t=
O x | x x| t=1
o) ) ®) X | X t =
X X t =
O x t—4
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Future directions

structure identification with max-consensus

protocol: each agent communicates once per epoch

time

o {ym(t)}

@) 0) X|IX|X|X|[X| t=0
o o
X | X X| t=1
o) ) ®) X | X t=2
X X| t=3
©) X t=4
o @) X| t=5 @

v
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Future directions

Vision

develop algorithms able to detect
network faults
and give indications

for self-reconfiguration purposes
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