Al over networks: when decisions shall be taken together

Damiano Varagnolo

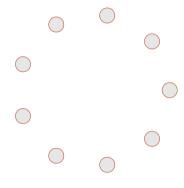
NTNU, Department of Engineering Cybernetics

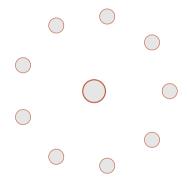
Who am I?

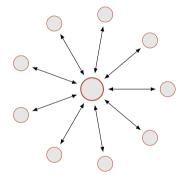
Purposes of this seminar

- discuss about some technological problems and potential solutions
- connect with you

Purposes of this seminar

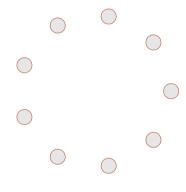

- discuss about some technological problems and potential solutions
- connect with you

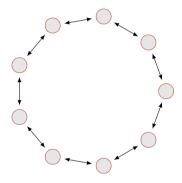

today's cut: divulgation


Roadmap

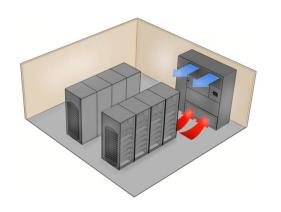
- centralized vs. distributed
- how shall we share information?
- consensus
- taking decisions over networks

centralized vs. distributed



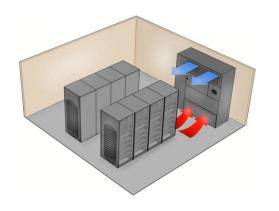


What does distributed mean?


What does distributed mean?

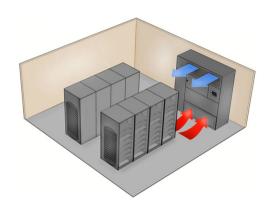
What does distributed mean?

Different paradigms for different applications

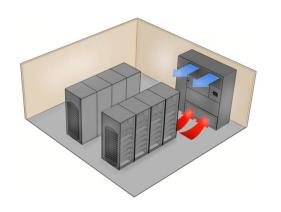

Summary of the pros and cons

logical simplicity vs. practical feasibility

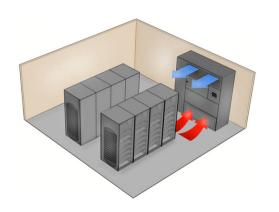
main problems: what to exchange, and how


how shall we share information? (in the distributed paradigm case)

Fixed vs. dynamic topologies

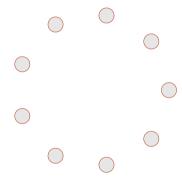


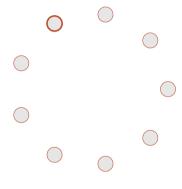
Wired vs. wireless communications

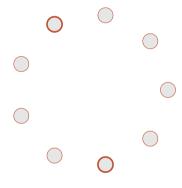


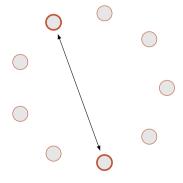
Synchronous vs. asynchronous communications

Lossless vs. lossy channels

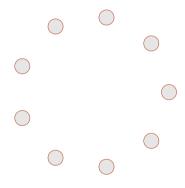


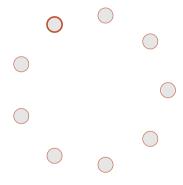


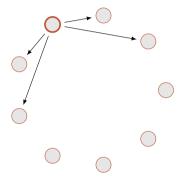

Summarizing, what are the main characteristics?


- do the connections change in time?
- what is the communication medium?
- is there a shared knowledge of time?
- may the communications fail?

towards consensus: the basic strategies for exchanging information




Byzantine generals, and their problems


Broadcast communications

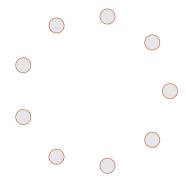
Broadcast communications

Broadcast communications

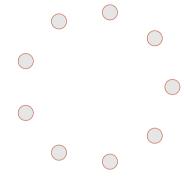
Summarizing, how can we be robust?

Summarizing, how can we be robust?

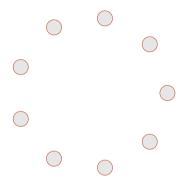
- broadcast
- asynchronous
- tolerating packet losses


Summarizing, how can we be robust?

- broadcast
- asynchronous
- tolerating packet losses


remember: there is no free lunch!

consensus


What does *consensus* mean?

Why is it important?

Why is it important?

example of a collective decision: if in average colder than 18°, then turn the heaters on

Average consensus

$$\begin{cases} \text{ local state:} & \theta_i, \quad i=1,\dots,n \\ \\ \text{ desired quantity:} & \frac{1}{n}\sum_{i=1}^n\theta_i \end{cases}$$
 (1

Max consensus

$$\begin{cases} \text{local state:} & \theta_i, \quad i=1,\ldots,n \\ \\ \text{desired quantity:} & \max\left\{\theta_1,\ldots,\theta_n\right\} \end{cases} \tag{2}$$

Max consensus

$$\begin{cases} \text{local state:} & \theta_i, \quad i=1,\ldots,n \\ \\ \text{desired quantity:} & \max\left\{\theta_1,\ldots,\theta_n\right\} \end{cases} \tag{2}$$

example of a collective decision: randomly select a leader

Max consensus: how?

Order statistics consensus

$$\begin{cases} \text{local state:} & \theta_i, \quad i=1,\dots,n \\ \\ \text{desired quantities:} & \max\left\{\theta_1,\dots,\theta_n\right\} \text{ and } \min\left\{\theta_1,\dots,\theta_n\right\} \end{cases} \tag{3}$$

Order statistics consensus

$$\begin{cases} \text{local state:} & \theta_i, \quad i=1,\ldots,n \\ \\ \text{desired quantities:} & \max\left\{\theta_1,\ldots,\theta_n\right\} \text{ and } \min\left\{\theta_1,\ldots,\theta_n\right\} \end{cases}$$

example of a collective decision: rapid anonymous statistical counting

Important remarks

max and order statistics consensus protocols can be broadcast, asynchronous, and using lossy media

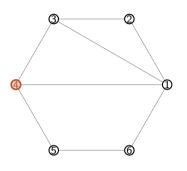
Important remarks

max and order statistics consensus protocols can be broadcast, asynchronous, and using lossy media

... but what about average consensus?

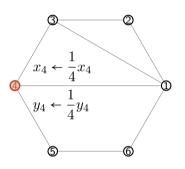
small detour: average consensus in practice

Gossip consensus

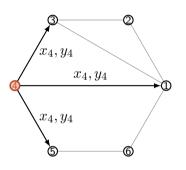

$$\begin{cases} \mathbf{x}(k+1) = P(k)\mathbf{x}(k) \\ x_i(0) = \theta_i \end{cases}$$

$$P(k) = \begin{bmatrix} 1/2 & 0 & 0 & 1/2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

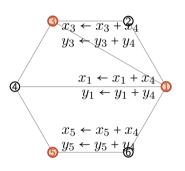
$$\begin{cases} \boldsymbol{x}(k+1) = P(k)\boldsymbol{x}(k) \\ x_i(0) = \theta_i \\ \boldsymbol{y}(k+1) = P(k)\boldsymbol{y}(k) \\ y_i(0) = 1 \end{cases}$$


$$\begin{cases} \boldsymbol{x}(k+1) = P(k)\boldsymbol{x}(k) \\ x_i(0) = \theta_i \\ \boldsymbol{y}(k+1) = P(k)\boldsymbol{y}(k) \\ y_i(0) = 1 \end{cases}$$

$$P(k) = \begin{bmatrix} 1 & 0 & 0 & 1/4 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1/4 & 0 & 0 \\ 0 & 0 & 0 & 1/4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/4 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

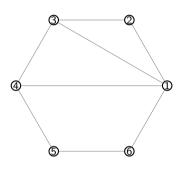

$$\begin{cases} \mathbf{x}(k+1) = P(k)\mathbf{x}(k) \\ x_i(0) = \theta_i \\ \mathbf{y}(k+1) = P(k)\mathbf{y}(k) \\ y_i(0) = 1 \end{cases}$$

$$P(k) = \begin{bmatrix} 1 & 0 & 0 & 1/4 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1/4 & 0 & 0 \\ 0 & 0 & 0 & 1/4 & 0 & 0 \\ 0 & 0 & 0 & 1/4 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$


$$\begin{cases} \boldsymbol{x}(k+1) = P(k)\boldsymbol{x}(k) \\ x_i(0) = \theta_i \\ \boldsymbol{y}(k+1) = P(k)\boldsymbol{y}(k) \\ y_i(0) = 1 \end{cases}$$

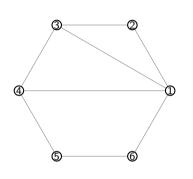
$$P(k) = \begin{bmatrix} 1 & 0 & 0 & 1/4 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1/4 & 0 & 0 \\ 0 & 0 & 0 & 1/4 & 0 & 0 \\ 0 & 0 & 0 & 1/4 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{cases} \boldsymbol{x}(k+1) = P(k)\boldsymbol{x}(k) \\ x_i(0) = \theta_i \end{cases}$$
$$\boldsymbol{y}(k+1) = P(k)\boldsymbol{y}(k)$$
$$y_i(0) = 1$$


$$P(k) = \begin{bmatrix} 1 & 0 & 0 & 1/4 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1/4 & 0 & 0 \\ 0 & 0 & 0 & 1/4 & 0 & 0 \\ 0 & 0 & 0 & 1/4 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{cases} \mathbf{x}(k+1) = P(k)\mathbf{x}(k) \\ x_i(0) = \theta_i \\ \mathbf{y}(k+1) = P(k)\mathbf{y}(k) \\ y_i(0) = 1 \end{cases}$$

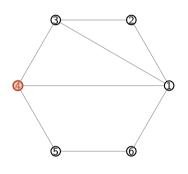
$$P(k) = \begin{bmatrix} 1 & 0 & 0 & 1/4 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1/4 & 0 & 0 \\ 0 & 0 & 0 & 1/4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/4 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$


$$\begin{cases} x_i(k) \to \beta_i(k) \sum_j x_i(0) \\ y_i(k) \to \beta_i(k) \sum_j y_i(0) \end{cases}$$

$$\begin{cases} x(k+1) = P(k)x(k) \\ x_i(0) = \theta_i \\ y(k+1) = P(k)y(k) \\ y_i(0) = 1 \end{cases}$$

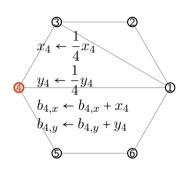
$$P(k) = \begin{bmatrix} 1 & 0 & 0 & 1/4 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1/4 & 0 & 0 \\ 0 & 0 & 0 & 1/4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/4 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{cases} x_i(k) \to \beta_i(k) \sum_j x_i(0) \\ y_i(k) \to \beta_i(k) \sum_j y_i(0) \end{cases}$$



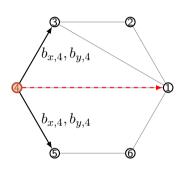
$$\begin{cases} x_i(k) \to \beta_i(k) \sum_j x_i(0) \\ y_i(k) \to \beta_i(k) \sum_j y_i(0) \end{cases} \implies z_i(k) := \frac{x_i(k)}{y_i(k)} \to \frac{\sum_i x_i(0)}{\sum_i y_i(0)} = \frac{1}{N} \sum_i \theta_i$$

$$\begin{cases} \boldsymbol{x}(k+1) = P(k)\boldsymbol{x}(k) \\ x_i(0) = \theta_i \\ \boldsymbol{y}(k+1) = P(k)\boldsymbol{y}(k) \\ y_i(0) = 1 \end{cases}$$


$$\begin{cases} x(k+1) = P(k)x(k) \\ x_i(0) = \theta_i \\ y(k+1) = P(k)y(k) \\ y_i(0) = 1 \end{cases}$$

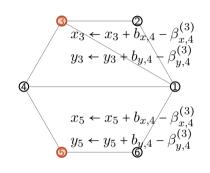
$$P(k) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1/4 & 0 & 0 \\ 0 & 0 & 0 & 1/4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{cases} \mathbf{x}(k+1) = P(k)\mathbf{x}(k) \\ x_i(0) = \theta_i \\ \mathbf{y}(k+1) = P(k)\mathbf{y}(k) \\ y_i(0) = 1 \end{cases}$$


$$P(k) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1/4 & 0 & 0 \\ 0 & 0 & 0 & 1/4 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

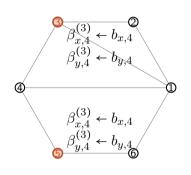
- $b_{i,x}$: total cumulative mass of x_i
- $\beta_{i,x}^{(j)}$: j's local estimate of $b_{i,x}$

$$\begin{cases} \boldsymbol{x}(k+1) = P(k)\boldsymbol{x}(k) \\ x_i(0) = \theta_i \\ \boldsymbol{y}(k+1) = P(k)\boldsymbol{y}(k) \\ y_i(0) = 1 \end{cases}$$


$$P(k) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1/4 & 0 & 0 \\ 0 & 0 & 0 & 1/4 & 0 & 0 \\ 0 & 0 & 0 & 1/4 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- $b_{i,x}$: total cumulative mass of x_i
- $\beta_{i,x}^{(j)}$: j's local estimate of $b_{i,x}$

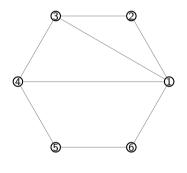
$$\begin{cases} x(k+1) = P(k)x(k) \\ x_i(0) = \theta_i \\ y(k+1) = P(k)y(k) \\ y_i(0) = 1 \end{cases}$$


$$P(k) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1/4 & 0 & 0 \\ 0 & 0 & 0 & 1/4 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- $b_{i,x}$: total cumulative mass of x_i
- $\beta_{i,x}^{(j)}$: j's local estimate of $b_{i,x}$

$$\begin{cases} \mathbf{x}(k+1) = P(k)\mathbf{x}(k) \\ x_i(0) = \theta_i \\ \mathbf{y}(k+1) = P(k)\mathbf{y}(k) \\ y_i(0) = 1 \end{cases}$$

$$P(k) = \begin{bmatrix} 1 & 0 & \mathbf{0} & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1/4 & 0 & 0 \\ 0 & 0 & 0 & 1/4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$



- $b_{i,x}$: total cumulative mass of x_i
- $\beta_{i,x}^{(j)}$: j's local estimate of $b_{i,x}$

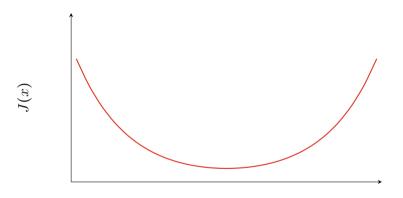
$$\begin{cases} \boldsymbol{x}(k+1) = P(k)\boldsymbol{x}(k) \\ x_i(0) = \theta_i \\ \boldsymbol{y}(k+1) = P(k)\boldsymbol{y}(k) \\ y_i(0) = 1 \end{cases}$$

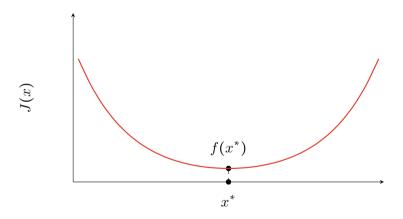
$$P(k) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1/4 & 0 & 0 \\ 0 & 0 & 0 & 1/4 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

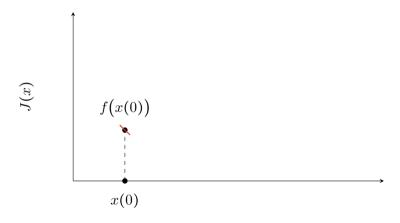
- $b_{i,x}$: total cumulative mass of x_i
- $\beta_{i,x}^{(j)}$: j's local estimate of $b_{i,x}$

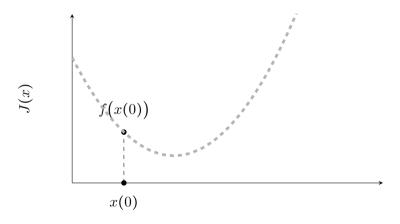
$$z_i(k) = \frac{x_i(k)}{y_i(k)} \to \frac{1}{N} \sum_j \theta_i$$

taking decisions over networks

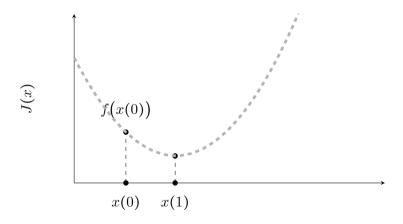

Numerical optimization: a hidden technology

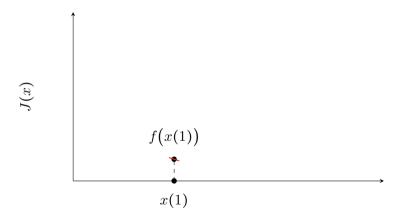

$$x^* = \arg\min_{x \in \mathcal{X}} J(x)$$
s.t. $Ax = b$ (4)
$$g(x) \ge 0$$

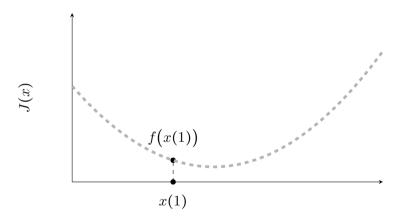

Numerical optimization: a hidden technology


$$x^* = \arg\min_{x \in \mathcal{X}} J(x)$$

s.t. $Ax = b$
 $g(x) \ge 0$ (4)


every decision is an optimization!





From the centralized NR to its distributed version

Newton update:

$$x^+ = x - \frac{f'(x)}{f''(x)}$$

thus

$$f(x) = \sum_{i=1}^{N} f_i(x) \implies x^+ = x - \frac{\sum_{i=1}^{N} f_i'(x)}{\sum_{i=1}^{N} f_i''(x)}$$

From the centralized NR to its distributed version

Newton update:

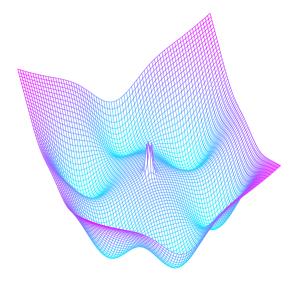
$$x^+ = x - \frac{f'(x)}{f''(x)}$$

thus

$$f(x) = \sum_{i=1}^{N} f_i(x) \implies x^+ = x - \frac{\sum_{i=1}^{N} f_i'(x)}{\sum_{i=1}^{N} f_i''(x)} = \frac{\sum_{i=1}^{N} \left(f_i''(x)x - f_i'(x) \right)}{\sum_{i=1}^{N} f_i''(x)}$$

From the centralized NR to its distributed version

Newton update:


$$x^+ = x - \frac{f'(x)}{f''(x)}$$

thus

$$f(x) = \sum_{i=1}^{N} f_i(x) \implies x^+ = x - \frac{\sum_{i=1}^{N} f_i'(x)}{\sum_{i=1}^{N} f_i''(x)} = \frac{\frac{1}{N} \sum_{i=1}^{N} \left(f_i''(x)x - f_i'(x) \right)}{\frac{1}{N} \sum_{i=1}^{N} f_i''(x)}$$

i.e., parallel of two average consensi

Example: distributed formation control

Example: distributed formation control

video

a look into the future

TODOs

- more general & robust distributed optimization procedures
- develop self-tuning procedures

TODOs

- more general & robust distributed optimization procedures
- develop self-tuning procedures

• relieve humans from automatable burdens

Al over networks: when decisions shall be taken together

Damiano Varagnolo

NTNU, Department of Engineering Cybernetics