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Roadmap

@ centralized vs. distributed
@ how shall we share information?
@ consensus

@ taking decisions over networks
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What does distributed mean?
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Different paradigms for different applications




Summary of the pros and cons

logical simplicity vs. practical feasibility

main problems: what to exchange, and how




how shall we share information?
(in the distributed paradigm case)
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Fixed vs. dynamic topologies
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Wired vs. wireless

communications
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Synchronous vs.

asynchronous communications
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Lossless vs. lossy channels
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Summarizing, what are the main characteristics?

@ do the connections change in time?
@ what is the communication medium?
@ is there a shared knowledge of time?

@ may the communications fail?
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towards consensus:
the basic strategies for exchanging information
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A fundamental strategy: gossip
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Byzantine generals, and their problems

N Y
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Broadcast communications
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Summarizing, how can we be robust?
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Summarizing, how can we be robust?
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Summarizing, how can we be robust?

@ broadcast
@ asynchronous

@ tolerating packet losses

remember: there is no free lunch!
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consensus
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What does consensus mean?
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Why is it important?
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Why is it important?

example of a collective decision: if in average colder than 18°, then turn the heaters on
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Average consensus

local state:

desired quantity:
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Max consensus

local state: 0;, i=1,...

desired quantity: max {6y, ...

1 On}
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Max consensus

local state: 0;, i=1,...,n

desired quantity: max{6y,...,60,}

example of a collective decision: randomly select a leader
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Max consensus: how?
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Order statistics consensus

local state:

desired quantities:

max {61, ..

.,0r} and min {6q,...

,On}
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Order statistics consensus

local state: 0;, i=1,....n

desired quantities: max{6y,...,0,} and min{6,...,60,}

example of a collective decision: rapid anonymous statistical counting
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Important remarks

max and order statistics consensus protocols can be
broadcast, asynchronous, and using lossy media
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Important remarks

max and order statistics consensus protocols can be
broadcast, asynchronous, and using lossy media

... but what about average consensus?
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small detour:
average consensus in practice
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Gossip consensus
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Ratio consensus, i.e., how to use broadcast communications
x(k+1) = P(k)z(k)
ZBZ(O) = 91

y(k+1) = P(k)y(k)
yi(0) =1
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z(k+1) = P(k)z(k)

zi(0) =0
y(k+1) = P(k)y(k)

yi(0) =1
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Ratio consensus, i.e., how to use broadcast communications
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Ratio consensus, i.e., how to use broadcast communications

x(k+1)=P(k)x(k)

y(k+1) = P(k)y(k)
yi(0) =1
[1 0 0 1/4 0 0 ]
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Robust ratio consensus, i.e., how to handle lossy channels

z(k+1) = P(k)z(k)
ilIZ(O) = 01
y(k+1) = P(k)y(k)
yi(0) =1
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Robust ratio consensus, i.e., how to handle lossy channels

z(k+1) = P(k)z(k)

zi(0) = 0;
y(k+1) = P(k)y(k)
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Robust ratio consensus, i.e., how to handle lossy channels

z(k+1) = P(k)z(k)

i(0) = 0;
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z(k+1) = P(k)z(k)
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Robust ratio consensus, i.e., how to handle lossy channels
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Robust ratio consensus, i.e., how to handle lossy channels

z(k+1) = P(k)z(k)
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taking decisions over networks
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Numerical optimization: a hidden technology

x* = argminJ(z)
reX

st. Ax=»
g(x) 20
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Numerical optimization: a hidden technology

x* = argminJ(z)
reX

st. Ax=»
g(x) 20

every decision is an optimization!
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Centralized Newton Raphson

J(x)
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Centralized Newton Raphson

J(x)

f(=")

[ 3
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Centralized Newton Raphson

J(x)
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Centralized Newton Raphson

S 7(2(0))
z(0)
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Centralized Newton Raphson

J(x)

z(0) (1)
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Centralized Newton Raphson

J(x)

F(x(1))

x(1)
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Centralized Newton Raphson

J(x)
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From the centralized NR to its distributed version

Newton update:

@
f"(x)
thus
N
. > 5i(2)
f(z) = Zfl(x) — gt=gp- 2l
NAE
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From the centralized NR to its distributed version

Newton update:
)
f"(x)

thus

N N
Y@ (@)= (@)

N B
f(«T):Zfl(m) = gzt =gx- ’;1 _ =l _
i=1 ;fzﬂ(x) Z;fz”(x)
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From the centralized NR to its distributed version

Newton update:

W@
17 ()
thus
N N
SH@ w2 (f @ @)
f(x) = Zﬂ(x) A S
> () SN
i=1 i=1

i.e., parallel of two average consensi
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distributed formation control

Example
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Example: distributed formation control

video
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a look into the future
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TODOs

@ more general & robust distributed optimization procedures

@ develop self-tuning procedures
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TODOs

@ more general & robust distributed optimization procedures

@ develop self-tuning procedures

@ relieve humans from automatable burdens
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