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Purposes of this seminar

@ discuss about a useful tool

@ connect with you



Roadmap

@ Stein's lemma
@ Stein's unbiased risk estimator (SURE)

@ Model selection through SURE
(will follow “Stein’s Unbiased Risk Estimate, Statistical Machine Learning 2015,
Tibshirani & Wasserman”)

@ RKHS-based regression
@ average-consensus algorithms

@ SURE in our distributed regression context



Stein's lemma



Stein’'s univariate lemma

X ~N(,u,02)
f R+~ R absolutely continuous

f" exists and is s.t. E[|f'(X)|] < +o0



Stein’'s univariate lemma

If:
X ~N(,u,02)
f R~ R absolutely continuous
f" exists and is s.t. E[|f'(X)|] < +o0
then:

E[(X -u) f(X)]=’E[f(X)]



Implications

(with 6® = 1 for notational simplicity)

E[(X - p) f(X)] = cov (X, f(X)) =E[f(X)]
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Implications

with ¢ = 1 for notational simplicit
y

E[(X - p) f(X)] = cov (X, f(X)) =E[f(X)]

e if f is an estimator of yu, then estimating cov (X, f(X)) through
E[(X - ) f(X)] requires knowing ;1 == not a feasible path!

e alternative strategy: estimate cov (X, f(X)) through computing E [f'(X)]



Stein's multivariate lemma

If:

X ~ N (p,0%I) (6)
f:R™ =R almost differentiable, i.e.: @
f(-,x_;): R~ R absolutely continuous for a.e. z; e R" ' andi=1,...,n

of exists and is s.t. ]EHgf (X)H <+oo foreachi=1,...,n (8)
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Stein's multivariate lemma

If:
X ~ N (p,0°T)
f:R" =R almost differentiable, i.e.:
f(-,x_;): R~ R absolutely continuous for a.e. z; e R" ' andi=1,...,n
0 0
/ exists and is s.t. ]E[ / (X)H <+oo foreachi=1,...,n
then:

E[(X -p) f(X)] =’E[Vf(X)]



Stein’s multivariate lemma (2)

X ~ N (pn,0°I) fR"-R*  f=[f1,...,

=  E[(X-p) fi(X)]=0’E[Vfi(X)]



Stein’s multivariate lemma (2)

X ~N (p,0°1) fAR"=R"  f=[f,..., fn] (10)
=  E[(X-p) fi(X)]=0’E[Vfi(X)] (11)

_— icov (Xi, fi(X)) = o’FE [Z 2:]: (X):| (12)

=1



From Stein’s multivariate lemma
to Stein's unbiased risk estimate (SURE)

Yy ~N(,u,02I) n:R"—»R" 7 (y) = estimate of y at y

(13)
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From Stein’s multivariate lemma
to Stein's unbiased risk estimate (SURE)

Yy ~./\/(,u,02I) n:R"—»R" 7 (y) = estimate of y at y

R =E[|n-7l3]
=E[|u-y+y-al3]

(13)
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From Stein’s multivariate lemma
to Stein's unbiased risk estimate (SURE)

Yy ~N(,u,02I) n:R"—»R" 7 (y) = estimate of y at y

R =E[|n-7l3]
E[lp-y+y-7l3]
E[|n-yl3]+E[ly - al3] + 2E[(n-9)" (v - )]

(13)
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From Stein’s multivariate lemma
to Stein's unbiased risk estimate (SURE)

Yy NN(,U,O'QI) n:R"—»R" 7 (y) = estimate of y at y

R =E[|n-7l3]
E[lp-y+y-7l3]
E[|n-yl3]+E[ly - al3] + 2E[(n-9)" (v - )]

=no’ +E[|y- 73]+ 2E[(n-)" (v-1)]

n
=-no? +E[|y-7l3] + 2 cov (yi. T1i)
=1

(13)

(14)
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From Stein’s multivariate lemma
to Stein's unbiased risk estimate (SURE)

n
R=E[|n-7l3] = -no® +E[|y - Al3] +2 ) cov (yi. i)
i=1
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From Stein’s multivariate lemma
to Stein's unbiased risk estimate (SURE)

n
R=E[|p-7l3] = -no® +E[|y - 73] + 2 cov (vi, ;)
=1

5 2 2 2 <& Ol
= R=-no"+|y-7l;+20 Z_a (v)
=1 Yy

with E[R] = R
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Model selection through SURE in general
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Model selection through SURE in general

1= Ty

(17)
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Model selection through SURE in general

1= Ty

Ry =-no®+ |y - H/\||2+202Z
=1

M)\ 7
y;

(v)

(17)

(18)
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Model selection through SURE in general

DL (17)
) 2 M)\z
Ry =-no®+|y-ml3+20 Z (v) (18)
=1 8y1
2 :U’>\z
A —argm1n||y u>\H2+20 Z (v) (19)
=1 ayl

requires:
@ to verify that i) is almost differentiable
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Model selection through SURE in general

1= Ty

Bo=—no® + [y -3 + 207 . S

=1

A= argmln ly - u>\H2 +20° Z

requires:
@ to verify that i) is almost differentiable

—

i »
@ to compute the divergence of Ty, i.e., gm
Yi

i=1

(v)

M)\ 7
y;

:u’>\ i
y;

(v)

(v)
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Model selection through SURE: the linear case
If:
y=p+e 1 deterministic
y* =+ e” future measurements on the same input locations

e,e” uncorrelated, zero mean, with covariance ©

7 = Sy linear estimator of y*

(20)

(21)

(22)

(23)
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Model selection through SURE: the linear case

If:
y=p+e 1 deterministic
y* =+ e” future measurements on the same input locations
e,e” uncorrelated, zero mean, with covariance ©
7 = Sy linear estimator of y*
Then:

ly - 7|% + 2tr (SX) is an unbiased estimator of the risk [ [||y* —’g]||§]

(23)

(24)
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Model selection through SURE: examples of literature

literature on other cases:

Li (1985), From Stein’s unbiased risk estimates to the method of generalized
cross-validation, Annals of Statistics

Li (1986), Asymptotic optimality of ¢; and generalized cross-validation in ridge regression
with application to spline smoothing, Annals of Statistics

Johnstone (1986), On imadmissibility of some unbiased estimates of loss, technical report
Kneip (1994), Ordered linear smoothers, Annals of Statistics

Donoho & Johnstone (1995), Adapting to unknown smoothness via wavelet shrinkage,
Journal of the American Statistical Association

Efron et al. (2004), Least angle regression, Annals of Statistics
Zou et al. (2007), On the degrees of freedom of the lasso, Annals of Statistics
Tibshirani & Taylor (2011), The solution path of the generalized lasso, Annals of Statistics

Tibshirani & Taylor (2012), Degrees of freedom in lasso problems, Annals of Statistics
15



Model selection through SURE for a specific case
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The original practical problem: function estimation

f:X->R

1,...,M

ym:f(xm)"'Vm m
T ~ (X)) iid. Vm~/\/'(0,012,) m=1,....M

{zm}M (VM mutually independent
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The original practical problem: function estimation
f:X->R

1,...,M

Ym = (¥m) +vm  m
T ~ (X)) iid. Vm~/\/'(0,012,) m=1,....M
{wm}%:l {Vm}%zl mutually independent

Problem: estimate f starting from {Zm,, ym }
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Nonparametric approach (cast the problem as a Gaussian regression)

f~N(0,K) K:XxX >R sothat E[f(z)f(z")]=K (z,2')

(29)
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Non parametric approach (cast the problem as a Gaussian regression)

f~N(0,K) K:XxX >R sothat E[f(x)f(az')]=K(:L‘,x')
Examples:
@ Brownian motion: K(a:,ac') = min (x,x') X =[0,1]

@ Radial basis: K(:L',{L") = exp(— Hl’—ZL"HZ) X cR™

(29)
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Maximum a posteriori estimator

Puar(@) =E[f(@) | {zm,ym} |

(also MV)

19



Maximum a posteriori estimator

Puap(@) =E[f(@) [{zm.ym} | (50 M1V)

M
= Z K(z,zm)cm (a.k.a. regularization network)
m=1

(30)
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Maximum a posteriori estimator

Tuap(2) =E[f(@) [{wmym} | (sl V)
M (30)
= > K(z,2m)cm (a.k.a. regularization network)
m=1
€ Y1
= Huvap| (31)
CM Ym
-1
K(zy,21) - K(w,2m)
Hyiap = : : +a,l (32)
K(za,w1) - K(xwm, )

19



Gaussian regression — practical issues associated to the MAP

Y1
Fuap(z) = [K(:E,:El) K(z,ajM)]HMAP : (33)
Ym
K(:Ul’ml) K(l'l,l'M) -1
Hyiap = : : + 021 (34)
K(zp,z1) - K(xa,xwm)

computational cost O (M?’)

20



How may we tackle the O (M3) computational cost issue?

-1
K(xi,21) - K(x1,70)

Hyap = +02] (35)

K(:cM,xl) K($M,$M)

Typical approaches: low-rank / sparsification approximations

) &) &) @ &) R D

Smola & Schélkopf (2000)
Sparse greedy matrix approximations for machine learning

Quifionero-Candela & Rasmussen (2005)
A unifying view of sparse approximate Gaussian process regression

Bach & Jordan (2005)
Predictive low-rank decompositions for kernel methods

Snelson & Ghahramani (2006)
Sparse Gaussian processes using pseudo inputs

Culis et al. (2006)
Learning low-rank kernel matrices

Zhang & Kwok (2010)
Clustered Nystrém method for large scale manifold learning and dimension reduction

Ambikasaran et al. (2016)
Fast direct methods for Gaussian processes

21



Our approach: Karhunen-Loéve expansions

Fa) = i’zae@(m)
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Our approach:

Karhunen-Loéve expansions

+00 E +00
f(z) = Z_;ae¢e(x) = Z_;adbe(x) + Z;be¢E+e(x)

=:interesting =:remainder

(36)
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Our approach: Karhunen-Loéve expansions

+00 E +00
f(z)= Zlae¢e(x) = ;ae¢e($) + Zlbe¢E+e(x)

=tinteresting =:remainder
Aot () = fX K (z,2")bo(2")du(z) A A 50
K(@2') = 3 Ae0e(2)e(e) [, @)y (@)du(a) = o

(36)

(37)

(38)
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Our approach: Karhunen-Loéve expansions

+00 E +00
f(z)= Zlae¢e(x) = ;ae¢e($) + Zlbe¢E+e(x)

=tinteresting =:remainder
Ao () = fX K (z,2")bo(2")du(z) A A 50
K(2,2) = 3. Aede(2)5c(a) [, @)y (@)du(a) = o
e=1
ae~N(0,\),e=1,....F be ~N (0, \g1e), e=1,2, ...

@ Zhu et al. (1998)

Gaussian regression and optimal finite dimensional linear models

(36)

(37)

(38)

(39)
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Our approach: Karhunen-Loéve expansions

E +00
f(x)= Z acpe(T) + Z bePpie(x) Aede(T) = [)(K($v$’)¢e($,)dﬂ($’)
e=1 e=1

=tinteresting =:remainder

(40)

=  first I ¢.'s = best a-priori E-dimensional approximation in a MSE sense
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Our approach: Karhunen-Loéve expansions

’!/‘=[y1,---,yM]T vi=[v,...,uy
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Our approach: Karhunen-Loéve expansions

yzz[yla""yM]T V::[yl’.“’yM]T

gbl(;‘vM) ng(:xM)

a:=lay,...

,OF

]T

b:=[by,bs,...]" (41)

¢E+1.(1‘M) ¢E+2($M) ..

[¢1($1) o ¢p(T1) ] |:¢E+1($1) Pp2(71) ]
G = : . 7 = : : (42)
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Our approach: Karhunen-Loéve expansions

T

y=[yn,..oum)’t vl vn]t a:=[a,...,ag]" b:=[b,by,...]" (41)

[ébl(xl) o ¢p(T1) ] |:¢E+1(5U1) Pp2(71) ]
G = : . 7 = : : (42)

or(zar) . dulaa) bpa(@n) duea(ar) ..

y=Ga+Zb+v (43)
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Our approach: Karhunen-Loéve expansions

yzz[yl?"'?yM]T V::[yl’.“’yM]T

[¢1($1) e ¢E($1)] [<¢E+1($1) Pp2(71) -~]
G:= : : Z = : :

¢E+1(1‘M) ¢E+2($M) ..

y=Ga+Zb+v

oy
+
M M M

T -1
Fol@)=[o1(2) ~ ow(x)]a a=Hy sz(GG _A—l) ¢t

a:= [ala--waE]T b:= [bl,bz,...]T

(41)

(42)

(43)

(44)

24



Summary

Fe(z) = [¢1(z)

y=Ga+Zb+v

ng(:U)] Hy H:

M

computational cost: O(E?)

(GTG
+

SN

A

1)_1

S

25



Summary

y=Ga+Zb+v (45)

Fe(x) = [¢1(l‘) ng(:U)]Hy H:=

M M
interesting for us because =— > GLGn —=2=— N GlLym (47)

25



Average consensus

(i-e., how to compute an average in a distributed fashion?)

26



synchronous communications
synchronous consensus: x(k + 1) = Px(k) (with P doubly stochastic) (Markov chains
('60s), Seneta 2006, ...)
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synchronous communications
synchronous consensus: x(k + 1) = Px(k) (with P doubly stochastic) (Markov chains
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Ratio consensus

asynchronous communications with perfect channel feedback (Bénézit et al. 2010)
xz(k+1)=P(k)x(k)
1‘1(0) = 91

y(k+1) = P(k)y(k)
yi(0) =1

28



Ratio consensus

asynchronous communications with perfect channel feedback (Bénézit et al. 2010)

xz(k+1)=P(k)x(k)

y(k+1) = P(k)y(k)

[1 0 0 1/4 0©
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Ratio consensus

asynchronous communications with perfect channel feedback (Bénézit et al. 2010)

x(k+1) = P(k)x(k)

y(k+1) = P(k)y(k)
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Ratio consensus

asynchronous communications with perfect channel feedback (Bénézit et al. 2010)

xz(k+1)=P(k)x(k)

y(k+1) = P(k)y(k)

[1 0 0 1/4 0©
010 0 0

0 0 1 1/4 0

Pk) = 000 1/4 0
00 0 1/4 1

[ 000 0 0

_ o O O o O

Y1 < Y1 +ys

Ty < T+ 2
Ys < Ys +
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Ratio consensus

asynchronous communications with perfect channel feedback (Bénézit et al. 2010)

xz(k+1)=P(k)x(k)

z;(0) = 6;
y(k+1) = P(k)y(k)
yi(0) =1
(1 0 0 1/4 0 0]
010 0 00
001 1/4 0 0
PEY=1o o o 1/4 0 0
000 1/4 1 0
000 0 0 1]
yz(k) - 5z(k) Zyi(o)
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Ratio consensus

asynchronous communications with perfect channel feedback (Bénézit et al. 2010)

z(k+1) = P(k)z(k)

z;(0) = 0;
y(k+1) = P(k)y(k)
(1 0 0 1/4 0 0]
010 0 00
001 1/4 00
PE=1o 0 o 14 0 0
000 1/4 10
(000 0 0 1]
wi(k) > Bi(k) 3] 2:(0)
’ —  zi(k):= zilk) |, Lizil0) =i291
yz(k)_)ﬁz(k)zyz(()) yi(k) Yivi(0) N5
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Robust ratio consensus

asynchronous commumincation without perfect channel feedback (Dominguez-Garcia et al. 2011)
z(k+1) = P(k)z(k)
z;(0) =6;

y(k+1) = P(k)y(k)
yi(0) =1

29



Robust ratio consensus

asynchronous commumincation without perfect channel feedback (Dominguez-Garcia et al. 2011)

a(k+1) = P(k)z(k)

y(k+1) = P(k)y(k)

yi(0) =1
(1 0 0 0 0
010 0 O
o o1 1/4 0
Pk) = 0 0 0 1/4 0
00 0 1/4 1
[ 000 0 0

_ o O O O o
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Robust ratio consensus
asynchronous commumincation without perfect channel feedback (Dominguez-Garcia et al. 2011)

a(k+1) = P(k)z(k)

y(k+1) = P(k)y(k)
yi(()):l
(1 0 0 0 0 0]
010 0 00
o o0 1 1/4 00
Pk) = 0 0 0 1/4 0 0
000 1/4 1 0
000 0 0 1|

@ b; ,: total cumulative mass of x;
o 8Y): j's local estimate of b; ,
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Robust ratio consensus
asynchronous commumincation without perfect channel feedback (Dominguez-Garcia et al. 2011)

a(k+1) = P(k)z(k)

y(k+1) = P(k)y(k) b b

yl(O):l z,4, Vy,4
(1. 00 0 0 0]
010 0 00

py-| 00 1 1A 00 ba 4 by4
0o o0 o0 1/4 00
00 0 1/4 1 0
000 0 0 1|

@ b; ,: total cumulative mass of x;
o 8Y): j's local estimate of b; ,
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Robust ratio consensus
asynchronous commumincation without perfect channel feedback (Dominguez-Garcia et al. 2011)

a(k+1) = P(k)z(k)

y(k+1) = P(k)y(k)
yi((]):l
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Robust ratio consensus
asynchronous commumincation without perfect channel feedback (Dominguez-Garcia et al. 2011)

a(k+1) = P(k)z(k)

y(k+1) = P(k)y(k)
yi(()):l
[ 1. 0 0 0 0 0]
010 0 00
o o0 1 1/4 00
Pk) = 0 0 0 1/4 0 0
000 1/4 1 0
000 0 01 . 1
) } Zz(k) = xZ(k) - — 291
yi(k) Nj

@ b; ,: total cumulative mass of x;
o 8Y): j's local estimate of b; ,
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SURE in our distributed regression settings
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Recap: KL + average consensus

y=Ga+Zb+v

= a'a o2 )\ GT
fe(x)=[¢1(z) + ¢p(z)]Hy Hi:( i )‘MAEl) V3
GfTa 1 M ., Gly 1 X
= — G Gm - = — G m
o Mngl r 7 Mm; mY

(48)

(49)

(50)

31



Recap: KL + average consensus

y=Ga+Zb+v

= a'a o2 )\ GT
fe(x)=[¢1(z) + ¢p(z)]Hy Hi:( i )‘MAEl) V3
Gta 1 M, Gly 1 Y
-=3acrGg, —Z-=3GcTy,
o Mngl r 7 Mm; mY
Questions:

@ how shall we tune E7?

@ how shall we tune \?

31



Tuning of E (not in this presentation)

S
o

be: O(M3) comput., O (M) transm. o)

br: O(ES) comput., O(EQ) transm.

Y

o
br (E)
ace
reduced nye- ¥

original hyp. space




Tuning of X\: a SURE-based approach

Recall:

|y —G|* + 2tr (ST) is an unbiased estimator of the risk E [Hy* - ;i]||g] with 7 = Sy
(51)
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Tuning of X\: a SURE-based approach

Recall:

|y —G|* + 2tr (ST) is an unbiased estimator of the risk E [Hyyr - ij||g] with 7 = Sy

(51)
In our case: .
GTe (GTG fya,, N
5 CI6(C6 et ) )
T
nog28 ¢ (53)
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Tuning of X\: a SURE-based approach

Recall:

|y —G|* + 2tr (ST) is an unbiased estimator of the risk E [Hyyr - i]Hg] with 7 = Sy

(51)
In our case: .
GTe (GTG 70,, N
5 CI6(C6 et ) )
T
2=U§GM§ (53)

Important consideration: the original process was y = Ga + Zb + v, but this SURE
approach considers only Ga + V!
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Tuning of X\: a SURE-based approach

Recall:

|y —G|* + 2tr (ST) is an unbiased estimator of the risk E [Hyyr - g’ng] with 7 = Sy

(51)
In our case: .
GTe (GTG 701, N
5 CI6(C6 et ) )
T
2=U§GM§ (53)

Important consideration: the original process was y = Ga + Zb + v, but this SURE
approach considers only Ga + v! However, for large M, G"' Zb vanishes = SURE
score above is an asymptotically unbiased estimator of the actual risk

33



Does this work? Analysis on synthetic data
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Does this work? Analysis on synthetic data
e M =10000, 1000 Monte-Carlo runs, K = splines or exponential
e A = 50 potential As, log-spaced in [10_3, 103]
@ 1 “oracle” that knows f and thus what is the best A
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Does this work? Analysis on synthetic data
e M =10000, 1000 Monte-Carlo runs, K = splines or exponential
e A = 50 potential As, log-spaced in [10_3, 103]
@ 1 “oracle” that knows f and thus what is the best A

MSEs with K = splines MSEs with K = exponential
107 107°
8 \ 25 \
Th P 20 e
: o =
) 6 [ / B ) 15 [ ° B
N »n
- . 10 [ . .
4 ° | | I '10_4 5 | L I '10_6
4 5 6 7 8 5 10 15 20 25
oracle oracle
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Does this work? Analysis on field data
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Does this work? Analysis on field data
@ “Colorado rain” UCI dataset
o K(z,2") =exp (—10 | —x'Hz) fixed, A as before
@ 1000 Monte-Carlo runs, each with 2 random months of data as training set and 1
random month as test
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Does this work? Analysis on field data

@ “Colorado rain” UCI dataset
o K(z,2") =exp (—10 | —:E’H;) fixed, A as before
@ 1000 Monte-Carlo runs, each with 2 random months of data as training set and 1

random month as test
residual sum of squares

10°
T

4 Soglo]
w e °
=l
n2l 82 .

rd

0 | |

0 2 4 103

oracle



Some brief concluding remarks
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Some brief concluding remarks

@ SURE approaches can be valid alternatives to other model selection strategies

@ seem to be suitable for distributed average-consensus based settings
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Some brief concluding remarks

@ SURE approaches can be valid alternatives to other model selection strategies

@ seem to be suitable for distributed average-consensus based settings

What now?
@ time-varying estimation
@ generalizations for other distributed estimation settings & big data
(not discussed in this presentation)
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Purposes of this seminar

@ discuss about a useful tool

@ connect with you
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