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Distributed optimization

Problem formulation

minimize f(x) = YN, fi(x)

s.t. g(x) <0
xeX

convexity

assumptions

Multi-agents scenario

cooperation to find the
optimum




Our position in literature

primal based

@ unconstrained convex

uses second-order approximations

@ uses strong assumptions on the cost functions
(all other algorithms can work under our hypotheses)

our contribute: better convergence speed
for primal methods




lllustrative example: quadratic local cost functions

Simplified scalar scenario

f;(X)= %a;(x—b,-)z—i—c; a; >0

Corresponding solution
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i.e. parallel of 2 average consensus!
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And for generic convex local cost functions?

For quadratics . ..

1 N
N Z a,-b,-
x* = i:,i, with o aibj = f"(x;)xi — f/(xi)
1
N Zl aj o a; = f{(xi)

...so let's check

1 N 7/ !
) NZ (" (xi)xi — f(xi))
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Graphical interpretation
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Graphical interpretation

N
_ g 3ibi %Zf:1(fi“(x")x"ffi/(x"))
X = N - 1 N 2y

N 2t B (X0)

Gntuition: it is a Newton-Raphson approximationD




The complete algorithm — synchronous case

© quadratic approximations update:

o &i(k) = £ (a(k)x(K) — £/ (x(K))
o hi(k) = F'(x(k))

@ quadratic approximations mixing (av. consensus, P doubly
stochastic):

o y(k+1)=Ply(k) +g(k) — g(k —1)]
o z(k+1) = P[z(k) + h(k) — h(k — 1)]

component-wise):

y(k+1)
z(k+1)

© guesses updates (

o x(k+1)=(1—-¢e)x(k)+e




Towards an asynchronous version . ..
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The complete algorithm — asynchronous case

© quadratic approximations update:

o &i(k) = £(x(Kk))xi(k) — (k)
o hi(k) = £"(x(k))

@ quadratic approximations mixing:

o y(k+1) = P(K) |y(K) + E(K) (g(k) — g(k —1))]
o z(k+1) = P(k) [z(k) + E(k)(h(k) ~h(k— 1))]

© guesses updates:

o x(k+1) = x(k) + eN(k) (’z’él’j 1 3 - x(k)>



Block schematic representation

distributed .)
gi’ h’ i
( averaging

need just uniformly exponentially converging av. consensus
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Convergence properties - 1/3

Hypotheses on the local costs
o i € C2(R)

e f/ and f/” bounded

@ f; strictly convex
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Convergence properties - 2/3

Theorem

uniform activationt) = global convergence!

2)
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Convergence properties - 2/3

2)

Theorem
uniform activation'!) = global convergence! J

(1): on the long run all the nodes are activated
the same number of times

(2): for every open ball B, centered in x*
exists €, > 0 s.t.
for all e < &,
exist ¢,,ve > 0 s.t.

[k — x*|| < |lxo — x*|| - cce™ K ¥xo € B,
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Convergence properties - 3/3

Theorem

persistent activation'!) = local convergence!

2)
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2)
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Convergence properties - 3/3

Theorem

persistent activation'’) = local convergence(®

(1): bounded intercommunication intervals

(2): exists an open ball By centered in x* s.t.
exists € > 0 s.t.
foralle <€
exist ¢,v. > 0 s.t.

k

|xx — x*|| < ||x0 — x™|| - ce™ = Vxo € By
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Sketch of the proofs

O rewrite the algorithm to highlight two-time scales dynamics

@ analyze separately fast and slow dynamics
(discrete version of standard singular perturbation analysis)

© analysis of boundary layer:

e requires an exponentially convergent average consensus
e use discrete converse Lyapunov theorems

© analysis of reduced system:

e exploit averaging to remove the dependency on N(k)'s
@ massage av. consensus equations + exploit smoothness
assumptions on the f;'s to obtain a Lyapunov function
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Properties

Good:
@ easy implementation
@ “small” computational requirements
@ inherits qualities of consensus:

e small topological knowledge requirements
e robust to numerical errors and communication noise

Bad:
o f; € C2(R)

strong assumptions: o f; strictly convex
e f/ and f/" bounded
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Experiments description

@ circulant graph, N =30

0.5 0.25 0.25
025 0.5 0.25

e P=

025 05 0.25
0.25 025 05

@ f; = sum of exponentials
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Comparisons with a Distributed

Nedi¢ Ozdaglar Dist. subgr. meth
@ x(I)(k) = Px(k)
Q xi(k+1)=x\(k)—

Subgradient

. for multi-agent opt. (2009)
(consensus step)

(local gradient descent)

Numerical comparison
Dist. Subgradient

Dist. Newton-Raphson
10

10
5z 0 <z 0
X X
-5 -5
~10 —10
0 100 200 300 400 0 100 200 300 400
k [time] k [time]
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Comparisons with (an) ADMM
Bertsekas Tsitsiklis, Parall. and Dist. Computation (1997)

L, =3 [ fi (i) + ¥ 06— zim1) + ¥ (x5 — z) + ¥ (xi — zi41)

+§ |xi — Zi—1|2 + % |x;i — Zi|2 + % |xi — Zi+1|2}

Numerical comparison

ADMM Dist. Newton-Raphson
1 10
05 5
< o ? < 0
< 05 s %
-1 -10
0 20 40 60 80 100 0 20 40 60 80 100

k [time] k [time]
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Conclusions and future works

The algorithm we proposed . ..

is a distributed Newton-Raphson strategy (+)

requires really minimal network topology knowledge (+)
requires really minimal agents synchronization (+)

is simple to be implemented (+)

converges to global optimum under convexity and smoothness
assumptions (+ / -)

is numerically faster than subgradients (+)

is numerically slower than ADMMs (-)
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Conclusions and future works

Principal open problems

@ analytically characterize the convergence speeds for specific
functions and graphs
(with comparisons to other methods)

@ relax the assumptions
(strict convexity, C2, ...)

@ tune € on-line
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