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Disclaimer
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part I: distributed optimization and its needs
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An introduction to distributed optimization

f1

f2

f3 f4
f5

f6

f7

Assumption: neighbors cooperate to find the optimum of an
additively separable cost:

f (x) = 1
N

N∑
i=1

fi(x) x∗ = argminx f (x)
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Example of a practical optimization problem
Thermal conditioning in datacenters
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Distributed optimization playfields

1 example: datacenters
topology = fixed and known
communications = reliable and synchronous

2 example: network of exploring robots
topology = variable and unknown
communications = unreliable and asynchronous

3 NO variable and unknown topology + reliable and
synchronous communications or vice-versa
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Personal intuition and opinion

different playfields
m

different distributed optimization algorithms
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State of the art

3 main categories:

primal decompositions methods
(e.g. distributed subgradients)

dual decompositions methods
(e.g. alternating direction method of multipliers)

heuristic methods
(e.g. swarm optimization, genetic algorithms)
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Example

Alternating Direction Method of Multipliers (ADMM)
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ADMM [Bertsekas Tsitsiklis, 1997]

Primal:
min f1(x1) + f2(x2)
s.t. A1x1 + A2x2 − b = 0

Augmented Lagrangian:
Lρ(x1, x2, λ) = f1(x1) + f2(x2) + λT (A1x1 + A2x2 − b)

+ρ

2 ‖A1x1 + A2x2 − b‖22

Algorithm
1 x1(k + 1) = arg min

x1
Lρ
(
x1, x2(k), λ(k)

)
2 x2(k + 1) = arg min

x2
Lρ
(
x1(k + 1), x2, λ(k)

)
3 λ(k + 1) = λ(k) + ρ (A1x1 + A2x2 − b)
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Drawbacks of ADMM

min
x

N∑
i=1

fi(x) =⇒ min
{xi },{zij }

N∑
i=1

fi(xi)

s.t. xi = zij ∀i , j

N∑
i=1

fi(xi) +
∑

(i ,j)∈E
λT

ij (xi − zij) + ρ

2
∑

(i ,j)∈E
‖xi − zij‖2

hard to manage time-varying network topologies
hard to manage packet losses

⇒ ADMM ∈ specific playfield
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An other example

Distributed Subgradient Methods (DSMs)
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Distributed Subgradient Methods

[Nedic Ozdaglar, 2009]

xi(k)+ = xi(k)− αi(k)gi
(
xi(k)

)
xi(k + 1) =

N∑
j=1

aij(k)x+
j (k)

with
gi
(
xi(k)

)
:= local subgradient of local cost fi(·) at xi(k)

αi(k) := local stepsize

Convergence properties [Nedic Ozdaglar, 2007]
E.g., for bounded subgradients and αi(k) = α then

lim inf
k→+∞

f
(
xi(k)

)
= f ∗ + δ (δ = 0 if fi ’s are smooth)
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Advantages of DSM

xi(k)+ = xi(k)− αi(k)gi
(
xi(k)

)
xi(k + 1) =

N∑
j=1

aij(k)x+
j (k)

easy to manage time-varying network topologies
easy to manage packet losses

problem: quite slow! ⇒ DSM ∈ specific playfield
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Wish

find a strategy that works well in every distributed playfield

How?

(personal opinion)

find a strategy that works well in every centralized playfield
↓

make it distributed

=⇒ find a distributed Interior Point Method (IPM)

=⇒ find a distributed Newton-Raphson (NR)
17
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part II: Newton-Raphson Consensus
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Towards distributed NR schemes

starting point: simplest case, i.e.,
playfield = static reliable networks
unconstrained optimization problem
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Centralized NR

xn+1 = xn −
f ′(xn)
f ′′(xn) (1)

multidimensional version: ∆x = −
(
∇2f (x)

)−1∇f (x)
interpretation: xn+1 = minimizer of second order
approximation

xk+1 xk
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From centralized NR to distributed ones (1)

Newton update:
x+ = x − f ′(x)

f ′′(x)

Then

f (x) =
N∑

i=1
fi(x) =⇒ x+ = x−

N∑
i=1

f ′
i (x)

N∑
i=1

f ′′
i (x)

=

1
N

N∑
i=1

(
f ′′
i (x)x − f ′

i (x)
)

1
N

N∑
i=1

f ′′
i (x)

i.e., parallel of two average consensi
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From centralized NR to distributed ones (1)

What does x+ =

1
N

N∑
i=1

(
f ′′
i (x)x − f ′

i (x)
)

1
N

N∑
i=1

f ′′
i (x)

mean?

=⇒ approximate each fi(x) with a parabola:

f̂i(x) = 1
2ai (x − bi)2

{
aibi = f ′′

i (x)x − f ′
i (x)

ai = f ′′
i (x)

Problem: how do we go distributed, i.e., x+
i = xi + . . .?
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From centralized NR to distributed ones (2)

What does x+
j

1
N

N∑
i=1

(
f ′′
i (xi)xi − f ′

i (xi)
)

1
N

N∑
i=1

f ′′
i (xi)

mean? (2)

=⇒ approximate each fi(xi) with a parabola:

f̂i(xi) = 1
2ai (xi − bi)2

{
aibi = f ′′

i (xi)xi − f ′
i (xi)

ai = f ′′
i (xi)

Problem: this is not the correct Newton step!

Intuition: xi ’s close =⇒ (2) = good approximation
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Towards the distributed algorithm

Summary of the problems:

• if xi 6= xj then

1
N

N∑
i=1

(
f ′′
i (xi)xi − f ′

i (xi)
)

1
N

N∑
i=1

f ′′
i (xi)

is not the correct Newton step

• to compute the exact averages
is time consuming

Solution:
alternate consensus steps on the xi ’s
and smoothed local guesses updates
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The (synchronous) Newton-Raphson Consensus (NRC)

1 initialization:
gi(−1) = 0 hi(−1) = 0 yi(0) = 0 zi(0) = 0

2 computation of auxiliary local variables:
gi(k) := f ′′

i (xi(k))xi(k)− f ′
i (xi(k))

hi(k) := f ′′
i (xi(k))

3 average consensus on the Newton direction:
(P doubly stochastic)

y(k + 1) = Py(k)+g(k) − g(k − 1)
z(k + 1) = Pz(k)+h(k) − h(k − 1)

4 local update:

xi(k + 1) = (1 − ε)xi (k) + ε
yi(k + 1)
zi(k + 1)

25



The (synchronous) NRC: important features

Why xi(k + 1) = (1− ε)xi(k) + ε
yi(k + 1)
zi(k + 1)?

Why Py(k) + g(k)− g(k − 1) instead of Py(k) + g(k)?

Why gi(−1) = 0 hi(−1) = 0 yi(0) = 0 zi(0) = 0?
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Block schematic representation

gi , hi

g1, h1

gN , hN

any average
consensus P

y(k +1) = Py(k) + g(k)−g(k −1)

z(k +1) = Pz(k) + h(k)−h(k −1)

xi

x1

xN

local
computations

distributed
averaging

local
updates

gi (k) = f ′′
i (xi (k))xi (k) − f ′

i (xi (k))
hi (k) = f ′′

i (xi (k))
xi (k +1) = (1−ε)xi (k)+ε

yi (k + 1)
zi (k + 1)
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Convergence proof (singular perturbation theory)



x(0) = y(0) = z(0) = g(x(−1)) = h(x(−1)) = 0 initialization

y(k + 1) = P
(
y(k) + g(x(k))− g(x(k − 1))

)
fast dynamics

z(k + 1) = P
(
z(k) + h(x(k))− h(x(k − 1))

)
xi(k + 1) = (1− ε)xi(k) + ε

yi(k + 1)
zi(k + 1) slow dynamics

Fast dynamics
ε ≈ 0 =⇒ x(k + 1) ≈ x(k) = x (constant)

=⇒ yi(k+1)→ 1
N

N∑
i=1

gi(xi) = 1
N

N∑
i=1

f ′′
i (xi)xi−f ′

i (x) = ḡ(x)

=⇒ zi(k + 1)→ 1
N

N∑
i=1

hi(xi) = 1
N

N∑
i=1

f ′′
i (xi) = h̄(x)
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Convergence proof
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zi(k + 1) slow dynamics

Slow dynamics
yi = ḡ(x) zi = h̄(x)

=⇒ xi(k + 1) = (1− ε)xi(k) + ε
ḡ(x(k))
h̄(x(k))

same forcing term =⇒ lim
k→∞

xi(k)− xj(k) = 0

29
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Convergence proof

Slow dynamics
same forcing term =⇒ eventually xi = xj = x̄
=⇒

x̄+ = (1− ε)x̄ + ε
ḡ(x̄1)
h̄(x̄1)

= (1− ε)x̄ + ε
1
N
∑N

i=1 f ′′
i (x̄)x̄ − f ′

i (x̄)
1
N
∑N

i=1 f ′′
i (x̄)

= (1− ε)x̄ + ε

(
x̄ −

1
N
∑N

i=1 f ′
i (x̄)

1
N
∑N

i=1 f ′′
i (x̄)

)

= x̄ − ε
f ′(x̄)
f ′′(x̄)

Centralized Newton-Raphson!!
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ḡ(x̄1)
h̄(x̄1)

= (1− ε)x̄ + ε
1
N
∑N

i=1 f ′′
i (x̄)x̄ − f ′

i (x̄)
1
N
∑N

i=1 f ′′
i (x̄)

= (1− ε)x̄ + ε

(
x̄ −

1
N
∑N

i=1 f ′
i (x̄)

1
N
∑N

i=1 f ′′
i (x̄)

)

= x̄ − ε
f ′(x̄)
f ′′(x̄)

Centralized Newton-Raphson!!
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ḡ(x̄1)
h̄(x̄1)

= (1− ε)x̄ + ε
1
N
∑N

i=1 f ′′
i (x̄)x̄ − f ′

i (x̄)
1
N
∑N

i=1 f ′′
i (x̄)

= (1− ε)x̄ + ε

(
x̄ −

1
N
∑N

i=1 f ′
i (x̄)

1
N
∑N

i=1 f ′′
i (x̄)

)

= x̄ − ε
f ′(x̄)
f ′′(x̄)

Centralized Newton-Raphson!!

30



Formal results

fi quadratic =⇒ global exponential convergence with rate
sr(P) for ε = 1 for any connected graph

complete graph =⇒ centralized Newton-Raphson

fi ∈ C3 and convex =⇒ local exponential stability for
0 < ε < εc

global boundedness of f ′ · f ′′′

(f ′′)2 and f ′′ =⇒ global exponential
stability for 0 < ε < εc
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Simulations: SVM Classification
Spam-nonspam classification

x ∈ R4 (frequency of specific words)
y ∈ {0, 1} (spam, non spam)
network:

cost: fi (x) :=
∑

j
log
(
1 + exp

(
−yj

(
χT

j x + x0
)) )

+ γ ‖x‖22
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Simulations: regression
Housing regression

x ∈ R4 (size, distance from downtown, etc.)
y ∈ R (house price)
network:

cost: fi (x) :=
∑

j

(
yj − χT

j x − x0
)2∣∣∣yj − χT

j x − x0
∣∣∣+ β

+ γ ‖x‖22

34



Simulations: regression
Housing regression
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problem: can we play in the other playfield?

i.e., with asynchronous broadcast communications
without channel feedback?
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Ratio consensus
asynchronous communications with perfect channel feedback [Bénézit et al. 2010]

x(k + 1) = P(k)x(k)
xi(0) = θi

y(k + 1) = P(k)y(k)
yi(0) = 1

P(k) =



1 0 0 1/4 0 0
0 1 0 0 0 0
0 0 1 1/4 0 0
0 0 0 1/4 0 0
0 0 0 1/4 1 0
0 0 0 0 0 1



1

23

4

5 6


xi(k)→ βi(k)

∑
j

xi(0)

yi(k)→ βi(k)
∑

j
yi(0)

=⇒ zi(k) := xi(k)
yi(k) →

∑
i xi(0)∑
i yi(0) = 1

N
∑

i
θi
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Robust ratio consensus
asynch. comm. without perfect channel feedback [Dominguez-Garcia et al. 2011]


x(k + 1) = P(k)x(k)
xi(0) = θi
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P(k) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 1/4 0 0
0 0 0 1/4 0 0
0 0 0 1/4 1 0
0 0 0 0 0 1


bi,x : total cumulative mass of xi

β
(j)
i,x : j ’s local estimate of bi,x

1
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4

5 6

zi(k) = xi(k)
yi(k) →

1
N
∑

j
θi
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Robust Asynchronous NRC (RA-NRC)

Initialization
xi ← xo

yi = gold
i = gi ← f ′′

i (xo) xo − f ′
i (xo)

zi = hold
i = hi ← f ′′

i (xo)
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Robust Asynchronous NRC (RA-NRC)

Transmission

yi ←
1

|N out
i |+ 1

[
yi + gi − gold

i

]
zi ←

1
|N out

i |+ 1
[
zi + hi − hold

i

]
xi ← (1− ε)xi + ε

yi
[zi ]c

bi ,y ← bi ,y + yi
bi ,z ← bi ,z + zi
gold

i ← gi
hold

i ← hi
gi ← f ′′

i (xi)xi − f ′
i (xi)

hi ← f ′′
i (xi)
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Robust Asynchronous NRC (RA-NRC)

Reception

yj ← yj + bi ,y − β
(j)
i ,y + gj − gold

j

zj ← zj + bi ,z − β
(j)
i ,z + hj − hold

j

xj ← (1− ε)xj + ε
yj

[zj ]c

β
(j)
i ,y ← bi ,y

β
(j)
i ,z ← bi ,z

gold
j ← gj

hold
j ← hj

gj ← f ′′
i (xj)xi − f ′

i (xj)
hj ← f ′′

i (xj)
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Convergence properties of RA-NRC

Assumptions
fi ∈ C2, f ′′

i (x) > c
fixed, strongly connected and directed network
communications are persistent
(i.e., at least 1 communication in every [t, t + τ ])
bounded packet losses
(i.e., number of consecutive failures is limited)

Proposition
∃ Bδ (x∗) and εc ∈ R+ s.t. if xo ∈ Bδ and 0 < ε < εc then

|xi(k)− x∗| ≤ cλk ∀i

for opportune c ∈ R+ and λ < 1

42



Numerical experiments: RA-NRC vs. DSM
algorithms tuned with their best parameters and packet loss probability p = 0.1

fi(x) = (yi − 〈χi , x̃〉)2

|yi − 〈χi , x̃〉|+ β
+ γ ‖x‖22
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part III: the route from Newton-Raphson Consensus
to Distributed Interior Point Methods
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Missing features

handling constraints
distributed stepsize selection
partition-based optimization
distributed termination criteria
quasi-Newton methods
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part IV: conclusions
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Take-home messages

NRC ladders on average consensus for distributedly computing
Newton directions

NRC is a good candidate for developing distributed IPMs;
nonetheless it still lacks of some development
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if you want to collaborate on this area we are super keen to do so
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