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part |: distributed optimization and its needs



An introduction to distributed optimization
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Assumption: neighbors cooperate to find the optimum of an
additively separable cost:
1N

f(x)=— Z fi(x) x* = argmin, f(x)
N =



Example of a practical optimization problem

Thermal conditioning in datacenters
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Distributed optimization playfields

@ cxample: datacenters

e topology = fixed and known
e communications = reliable and synchronous

@ example: network of exploring robots

e topology = variable and unknown
e communications = unreliable and asynchronous

© NO variable and unknown topology + reliable and
synchronous communications or vice-versa



Personal intuition and opinion

different playfields

)

different distributed optimization algorithms



State of the art

3 main categories:

@ primal decompositions methods
(e.g. distributed subgradients)

@ dual decompositions methods
(e.g. alternating direction method of multipliers)

@ heuristic methods
(e.g. swarm optimization, genetic algorithms)
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Alternating Direction Method of Multipliers (ADMM)
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ADMM [Bertsekas Tsitsiklis, 1997]

Primal:
min fl(Xl) + fg(Xz)
st. Aixy+Axe —b=0

Augmented Lagrangian:

Lp(Xl,XQ, )\) = fl(Xl) + f2(X2) —+ AT (A1X1 + Aoxy — b)
—i-g |A1x1 4 Aaxz — bl[3

Algorithm
@ xi(k+1) = argmin L, (x1, x2(k), A(k))
@ xo(k +1) = argmin L, (x (k + 1), x3, A(K))
Q@ Mk +1) = Ak)+ p(Aix1 + Axxo — b)
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Drawbacks of ADMM

N
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i=1 s.t. xi = zjVi,j
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Drawbacks of ADMM

N
fi(xi
mXin Zf,(X) - {X:} {zu} ,22 X

i=1 s.t. xi = zjVi,j
N p
>+ 3 Als—z)+5 3 Izl
i=1 (ij)e€ (ij)e€

@ hard to manage time-varying network topologies

@ hard to manage packet losses
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Drawbacks of ADMM

N
fi(xi
mXin Zf,(X) - {X:} {zu} ,22 X

i=1 s.t. Xi = Zjj Vi, Jj
N
Do)+ D0 Af(xi - zy) Z Ixi = 2312
i=1 (ij)e€ (l,_/ )eE

@ hard to manage time-varying network topologies

@ hard to manage packet losses

= ADMM e specific playfield
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Distributed Subgradient Methods (DSMs)
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Distributed Subgradient Methods

[Nedic Ozdaglar, 2009]
xi(k)™

X/(k)_al(k)g/(xi(k))
xi(k+1) = Zau X" (k)
with

e gi(xi(k)) := local subgradient of local cost fi(-) at x;(k)

@ aj(k) := local stepsize

Convergence properties [Nedic Ozdaglar, 2007]
E.g., for bounded subgradients and «;(k) = « then

lim inf f(xi(k))=f"+d (6=0Iiff;'s are smooth)

k—+00
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Advantages of DSM
xi(k)© = XI,'V(k) — ai(k)gi(xi(k))
xi(k+1) = > a;(k)x' (k)
j=1

@ easy to manage time-varying network topologies

@ easy to manage packet losses
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Advantages of DSM

Xi(k)Jr = xj(k) — ai(k)gi(xi(k))
N
xitk+1) = ) ay(k)x" (k)
j=1
@ easy to manage time-varying network topologies

@ easy to manage packet losses

problem: quite slow!
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Advantages of DSM

Xi(k)Jr = xj(k) — ai(k)gi(xi(k))
N
xitk+1) = ) ay(k)x" (k)
j=1
@ easy to manage time-varying network topologies

@ easy to manage packet losses

problem: quite slow! = DSM € specific playfield
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find a strategy that works well in every distributed playfield
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Wish

find a strategy that works well in every distributed playfield

How?

(personal opinion)

find a strategy that works well in every centralized playfield

!

make it distributed

— find a distributed Interior Point Method (IPM)

— find a distributed Newton-Raphson (NR)
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part Il: Newton-Raphson Consensus
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Towards distributed NR schemes

starting point: simplest case, i.e.,
@ playfield = static reliable networks

@ unconstrained optimization problem
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Centralized NR

'(xn)
XI'IJrl = Xn - f,/(Xn)

e multidimensional version: Ax = —(sz(x))_1Vf(x)

@ interpretation: x,11 = minimizer of second order
approximation
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From centralized NR to distributed ones (1)

Newton update:

Then

N
> ()
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From centralized NR to distributed ones (1)

Newton update:

xt =x-— f/(X)
F(x)
Then
N N
" SHE) Y (ex - (%)
Fx)=> filx) = x"=x-17+ =—=1
- > () > ()



From centralized NR to distributed ones (1)

Newton update:

Xt = x — f'(x)
f7(x)
Then
N 1 N
y A0 2 (fx = F(x)
Fx)=> filx) = x"=x-17+ == .
- > () OAQ)
=1 i=1

i.e., parallel of two average consensi
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From centralized NR to distributed ones (1)

1 N 1 !
i N;(f, ()x = ()

What does xT = mean?
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From centralized NR to distributed ones (1)

1 N 1 !
i N;(f, ()x = ()

What does xT = N mean?
1

N ; f(x)

—> approximate each f;(x) with a parabola:

b — N iy
fi(x) = Ea; (x — b;)? { aib :2 () = £ (x)
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From centralized NR to distributed ones (1)

1 N 1 !
i N;(f, ()x = ()

What does xT = mean?

1 N

N 2; f'(x)
—> approximate each f;(x) with a parabola:

-~ o 1 2 a,-b,- :fl
f;(X) - Ea/ (X bl) { a; — f;-//(X)

+

Problem: how do we go distributed, i.e., x;" = x; + .. .:
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From centralized NR to distributed ones (2)

What does ~ x;m —=1 mean?  (2)

bl



From centralized NR to distributed ones (2)

1N
5 2 (7Gx = ()
What does xj+ i=1 5 mean?
1
szi//(xl)

— approximate each f;(x;) with a parabola:

N 1 ) b () x:
fi(xi) = zai (xi — b
(X) 23 (X b) { ai — f;-”(X,')

bl



From centralized NR to distributed ones (2)

What does ~ x;m —=1 mean?  (2)

— approximate each f;(x;) with a parabola:
Fla) = par o — b2 0 X0 O
(x) = —a: (xi — b
1 1 2 1 1 1 ai — f;-”(Xi)

Problem: this is not the correct Newton step!
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From centralized NR to distributed ones (2)

What does xt—1=1 mean?

— approximate each f;(x;) with a parabola:
Fla) = par o — b2 0 X0 O
(x) = —a: (xi — b
1 1 2 1 1 1 ai — f;-”(Xi)

Problem: this is not the correct Newton step!

Intuition: x;'s close = (2) = good approximation

bl



Towards the distributed algorithm

Summary of the problems:

1 N
N2 (/0 = ()

. i=1

o if x; # x; then TN
=D ()
Ni=

is not the correct Newton step

e to compute the exact averages

is time consuming
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Towards the distributed algorithm

Summary of the problems:

1 N
N2 (/0 = ()

. i=1

o if x; # x; then TN
=D ()
Ni=

is not the correct Newton step

e to compute the exact averages
is time consuming

Solution:

alternate consensus steps on the x;'s

and smoothed local guesses updates

24



The (synchronous) Newton-Raphson Consensus (NRC)

@ initialization:
e gi(-1)=0 h(-1)=0 y(0)=0 z(0)=0

© computation of auxiliary local variables:
o gi(k) := £ (xi(k))xi(k) — £ (xi(k))
o hi(k) := f"(xi(k))

© average consensus on the Newton direction:
(P doubly stochastic)

o y(k+1)=Py(k)+g(k) —g(k —1)
o z(k+1) = Pz(k)+h(k) — h(k —1)

© local update:

o xi(k+1)=(1—¢)x;i(k) +€}/(k+ 1)

Z,'(k + 1)

75



The (synchronous) NRC: important features

yilk+1),

Why xi(k + 1) = (1 — e)xi(k) + 62,'(/( 1)
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The (synchronous) NRC: important features

Why xi(k + 1) = (1 — e)xi(k) + >

Why Py(k) + g(k) — g(k — 1) instead of Py(k) + g(k)?

Why gi(-1) =0 hi(=1)=0 y;(0)=0 z(0)=0?
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Block schematic representation

local

computations

o)

C giahi ™

distributed

averaging

o)

any average
consensus P

y(k+1) = Py(k) + g(k) —g(k—1)

2(k+1) = Pz(k) + h(k)—h(k—1)

local

updates

—»..Xl )

| ]
e ———

n

]

)

>

gi(k) = £ (a(k)xi(k) — £ (k)

hi(k) = £ (xi(k))

xi(k+1)=(1—-¢e)xi(k)+e

yi(k+1)

Z,‘(k =+ 1)
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Convergence proof (singular perturbation theory)

x(0) = y(0) = z(0) = g(x(—1)) = h(x(—1)) = 0 initialization
y(k+1) = P(y(k) + g(x(k)) — g(x(k —1))) fast dynamics
z(k +1) = P(z(k) + h(x(k)) — h(x(k — 1)))

_ yi(k +1) .
xi(k+1) = (1—¢e)xi(k)+ Ez,-(k ) slow dynamics
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Convergence proof (singular perturbation theory)

x(0) = y(0) = z(0) = g(x(—1)) = h(x(—1)) = 0 initialization
y(k+1) = P(y(k) + g(x(k)) — g(x(k —1))) fast dynamics
z(k +1) = P(z(k) + h(x(k)) — h(x(k — 1)))

xi(k+1) = (1 —e)xi(k) + E}z/:(llz i B slow dynamics

e c~0 = x(k+1)= x(k) = x (constant)
1Y 1Y
o — yl(k+1) — NZgI(Xi) NZ ,N(X/)Xl f;,(X) :g‘(X)
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Convergence proof

y(k+1) = P(y(k) + g(x(k)) — g(x(k —1))) fast dynamics
z(k +1) = P(z(k) + h(x(k)) — h(x(k — 1)))
xi(k+1) = (1—-¢e)xi(k) + Ey’: k+1) slow dynamics

Slow dynamics

e yi=g(x) z= /_7(x)
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Convergence proof

Slow dynamics

o y; = g(x)

x(0) = y(0) = z(0) = g(x(—1)) = h(x(—1)) = 0 initialization
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Convergence proof

x(0) = y(0) = z(0) = g(x(—1)) = h(x(—1)) = 0 initialization

y(k+1) = P(y(k) + g(x(k)) — g(x(k —1))) fast dynamics

z(k +1) = P(z(k) + h(x(k)) — h(x(k — 1)))

xi(k+1) = (1—-¢e)xi(k) + E}z/:(llz i B slow dynamics
Slow dynamics

o yi =3(x) z = h(x) )

o — xi(k+1)=(1-¢e)xi(k)+ E%E;(Eg;

@ same forcing term = lim x;(k) — x;(k) =0
k—00
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@ same forcing term = eventually x; = x; = X
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Convergence proof

Slow dynamics
@ same forcing term = eventually x; = x; = X

°o =
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Convergence proof

Slow dynamics

@ same forcing term = eventually x; = x; = X

°o —
e B
xT =(1-¢) —1—5/_7()_(1)
o AT R
S~/ YT
N (o
:(1—€)>_<+5<x—iv ,’Vlf’”()i)>
(_) ‘N Z-i=1"i (X)
f'(x
TPR)

Centralized Newton-Raphson!!
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Formal results

@ f; quadratic = global exponential convergence with rate
sr(P) for e = 1 for any connected graph

@ complete graph = centralized Newton-Raphson

o f; € C3 and convex = local exponential stability for
O<e<e.

/ "

@ global boundedness of T and f = global exponential
stability for 0 < e < &,

21



Simulations: SVM Classification

Spam-nonspam classification

e x € R* (frequency of specific words)
e y €{0,1} (spam, non spam)

@ network:

@ cost: fi(x):= Z log (1 + exp (—)/j (XJ'TX + Xo)) ) + Hng
J

29



Simulations: SVM Classification

Spam-nonspam classification
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Simulations: regression

Housing regression

e x € R* (size, distance from downtown, etc.)
e y € R (house price)
@ network:

@ cost: fi(x) =

24



Simulations: regression

Housing regression
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problem: can we play in the other playfield?

i.e., with asynchronous broadcast communications
without channel feedback?
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x(k +1) = P(k)x(k)
X,'(O) = 0,‘

y(k+1) = P(k)y(k)
yi(0) =1

7



Ratio consensus

asynchronous communications with perfect channel feedback [Bénézit et al. 2010]

) . ® 3
y(k+1) = P(k)y(k)
yi(0) =
1 1/4 1 < L
0 0
0 1/4
P(k) =
8 1/4 @
0

1/4

O O O O O
= O O O O O

O O O O+~ O
O O O+~ O O
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Ratio consensus

asynchronous communications with perfect channel feedback [Bénézit et al. 2010]

@

. . ®
y(k+1) = P(k)y(k)
yi(0) = X4 1x
4 2 4
1 1/4 ] e 1 L
0 0 ya Zﬂ
CRIEEE
0
0

1/4 :

O O O O O
= O O O O O

O O O O+~ O
O O O+~ O O
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Ratio consensus

asynchronous communications with perfect channel feedback [Bénézit et al. 2010]

x(k +1) = P(k)x(k)
x,-(O):9,- @4@
y(k +1) = PR}y (K)
yl_(o):]_ X4, Y4
X4, Y4
(1 0 0 1/4 0 0] < -
01 0 0 00O e, Va
PO=1 5 0 0 14 0 o .
0 00 1/4 1 0
100 0 0 0 1|
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Ratio consensus

asynchronous communications with perfect channel feedback [Bénézit et al. 2010]

x(k +1) = P(k)x(k)

x,-(O):9,

y(k+1) = P(k)y(k)

yi(0) =1
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Ratio consensus

asynchronous communications with perfect channel feedback [Bénézit et al. 2010]

x(k+1) = P(k)x(k)
xi(0) = 0; @7@
y(k +1) = P(k)y(k)
yi(0) =1
(100 1/4 0 0] 3 .
010 0 00O
001 1/4 00
PII=10 0 0 14 0 o
000 1/4 1 0
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Ratio consensus

asynchronous communications with perfect channel feedback [Bénézit et al. 2010]

x(k +1) = P(k)x(k)
xi(0) = 0; @7@
y(k +1) = P(K)Y(K)
yi(0) =1
(100 1/4 0 0] 3 .
010 0 00
oo 114 00
PII=10 0 0 14 0 o
000 1/4 1 0
000 0 0 1]
xi(k) = B,(k)ZX,-(O)
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x(k +1) = P(k)x(k)
X,'(O) = 0,‘

y(k+1) = P(k)y(k)
yi(0) =1
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Robust ratio consensus

asynch. comm. without perfect channel feedback [Dominguez-Garcia et al. 2011]

x(k+1) = P(k)x(k)
X,'(O) = 9,‘
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Robust ratio consensus

asynch. comm. without perfect channel feedback [Dominguez-Garcia et al. 2011]

x(k +1) = P(k)x(k)
x,-(O):G,
y(k+1) = P(k)y(k)
yi(0) =1
1 00 0 0 0]
010 0 00
|0 01 1/4 00
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@ b;,: total cumulative mass of x;

° 5,03 Jj's local estimate of b; ,
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Robust ratio consensus

asynch. comm. without perfect channel feedback [Dominguez-Garcia et al. 2011]
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Robust ratio consensus

asynch. comm. without perfect channel feedback [Dominguez-Garcia et al. 2011]
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Robust Asynchronous NRC (RA-NRC)

Transmission
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Robust Asynchronous NRC (RA-NRC)

Reception
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Convergence properties of RA-NRC

Assumptions
o ficC? f'(x)>c
@ fixed, strongly connected and directed network

@ communications are persistent

(i.e., at least 1 communication in every [t,t + T])
@ bounded packet losses

(i.e., number of consecutive failures is limited)

Proposition
JBs(x*) and ec € Ry s.t. if x° € Bs and 0 < & < & then

Ixi(k) — x*| < cAk Vi

for opportune c € Ry and A < 1

pilp,



Numerical experiments: RA-NRC vs. DSM

algorithms tuned with their best parameters and packet loss probability p = 0.1
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part Ill: the route from Newton-Raphson Consensus
to Distributed Interior Point Methods

A4



@ handling constraints
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@ handling constraints

o distributed stepsize selection
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Missing features

@ handling constraints
@ distributed stepsize selection

@ partition-based optimization
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handling constraints

distributed stepsize selection
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distributed termination criteria
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Missing features

handling constraints

distributed stepsize selection

partition-based optimization

distributed termination criteria

quasi-Newton methods
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part IV: conclusions
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Take-home messages

@ NRC ladders on average consensus for distributedly computing
Newton directions

@ NRC is a good candidate for developing distributed IPMs;
nonetheless it still lacks of some development
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if you want to collaborate on this area we are super keen to do so

A8



Newton-Raphson Consensus: a distributed convex
optimization scheme for networks with
asynchronous and lossy communications

Nicoletta Bof = Ruggero Carli  Giuseppe Notarstefano
Luca Schenato ~ Damiano Varagnolo

Linkdéping - Automatic control - ISY

November 10, 2016

damiano.varagnolo@ltu.se



http://creativecommons.org/licenses/by-nc-sa/2.5/it/deed.en

