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The problem in practice

How shall we calibrate a sensor that behaves in this way?
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Rephrasing: how shall we account for:
@ a systematic bias that smoothly depends on the measurand?

@ a measurement noise whose variance also smoothly depends on the measurand?



The problem in practice — an illustrative example




The problem in formulas

Yi = fmean (xz) + fooise (xz)



The problem in formulas

Yi = fmean (xz) + fooise (frz)

fmean(xi):[l Z; «T? el TG
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The problem in formulas

Yi = fmean (xz) + fooise (mz)

fmean(mi):[l Z; x? va]

a~N(paSa)  pa=[0 1 0 - 0]

(assumption: e and To known)
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Y = diag (7'(;2)

(3)



The problem in formulas — noise term



The problem in formulas — noise term

Case I:  fhoise(®i)
Case Il:  fhoise(x;)
Case lll:  froise(;)

= UV

P

i

= nymean(mi)p

=0,T



The problem in formulas — noise term

Case I: fnoise(xi) =0y
Case II: fnoise(xi) = O-fo
Case IlI: fnoise(xi) = nymean(xi)p

What do these models represent?

Case I:  homoskedastic sensors
Case Il:  heteroskedasticity depending on the actual state
Case Ill:  heteroskedasticity depending on the expected measurement



The problem in formulas — noise term

Case I: fnoise(xi) =0y
Case II: fnoise(xi) = O-fo
Case IlI: fnoise(xi) = nymean(xi)p

What do these models represent?

Case I:  homoskedastic sensors
Case Il:  heteroskedasticity depending on the actual state
Case Ill:  heteroskedasticity depending on the expected measurement

Assumed priors

e 0,2 =1, ~Gamma (a,,b,)

e pe N (a,,by)



The problem in formulas — summary
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literature review



Literature review

Oy
[e7s) O'l,l'f
yi:[l va] N o P
aN oy [lx]lv]
an

ordinary least squares —> unbiased estimate of the mean, biased estimate of the

variance (that worsens with the degree of heteroskedasticity)

@ Box & Hill (1974)

Correcting inhomogeneity of variance with power transformation weighting

@ White (1980)

A heteroskedasticity-consistent cov. matrix estimator and a direct test for heteroskedasticity



Literature review

Oy
[e7s) O'l,l'f
Yi = [1 va] + 3 o p
aN oy [1 lev]
ay

other schemes focusing on simplified models == Gibbs samplers, MCMC schemes

@ Geweke (1993)
Bayesian treatment of the independent Student-t linear model

@ Boscardin & Gelman (1994)
Bayesian computation for parametric models of heteroscedasticity in the linear model

@ Tanizaki & Zhang (2001)
Posterior analysis of the multiplicative heteroscedasticity model



Our contributions

@ slightly more generic model (unknown p)
@ use exact likelihoods instead of approximated ones

@ create a stepping stone for schemes where also the x;'s are unknown



the calibration algorithms

disclaimer: the models (and associated calibration
procedures) are meaningful only for static sensors

11



Case |1 fuoise(x;) = 00

12



Case |1 fuoise(x;) = 00

problem: find the MAP for a, with the additional complexity that o, is unknown



Case |1 fuoise(x;) = 00

problem: find the MAP for a, with the additional complexity that o, is unknown

solution: Gibbs sampler, since we know the expressions of the conditional distributions
& all the priors and likelihoods are conjugate



Algorithm for Case |: fioise(;) = 04

Q initialization: a?) = pg 70 ~ Gamma (ay, b,)
@ for k=0,1,... up to convergence or kqq:
@ update 7, and « using Gibbs sampling:

a® D o p(a® |z, O
P p(Tlgk)|$7y7a(k+1))

where:

p(a® [z,y, 7)) o N (B A p®)
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p (7" |z, y,a**)) o« Gamma a, + 7,(— + =+ C’(k”)) )

b, 2
C(k+1) — (y _ Gma(k+1))
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Case 1 fuoise(x;) = 0y

example: MAP

fr—

arg

max
aeRN o2eR, peRy

p(a,0.plz,y)

(7)
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Case Il: fuoise(24) = o2

example: MAP = arg max p(a,ag,p|az,y)
aeRN o2eR, peRy

problem: now both &, and p are unknown (implying that also p (plx,y,a,7,) is
unknown)

(7)
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Case Il: fuoise(24) = o2

example: MAP = arg max p(a,a,%,pkv,y)
aeRN o2eR, peRy

problem: now both &, and p are unknown (implying that also p (plx,y,a,7,) is
unknown)

solution: Single-Component Metropolis-Hastings scheme

(7)
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Algorithm for Case Il: fyoise(2:) = 02!

O initialization: a(®) = Ho 7',50) ~ Gamma (ay, b,) p(o) =0

@ for k=0,1,... up to convergence or kqq:
@ update 7, and « using the Gibbs sampler:
aF+D) D (a(k) |fl377'u(k)’ o)

(D) (e1) () )

p (i |z, y. o
@ generate a new proposal:

P - N (9, 5)

@ calculate the acceptance probability:
p(yle. 0@l D, 7 ) (k0
p(y |z p®, kD D) p(p®)

v =min|1,

@ accept the new proposal if v >4 [0,1] and 0< p <10



Case IlI: fnoise(xi) = O'meean (xz)p

Qg
fmean (.%'Z) = [1 .. .%'iv] :

Yy = Ug diag(fmean($1)2p7 sy fmean(xM)Qp)
an
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Case IlI: fnoise(xi) = O'meean (xz)p

o
fmean (-752) = [1 cee -’L'iv] Yy = Ug diag(fmean($1)2p7 sy fmean(xM)Qp)
aN

problem: now not only p (p|x,y,a,7,), but also p (a|x,y, 7, p) is unknown

solution: use acceptance/rejection mechanisms also for a



Algorithm for Case lll: fuoise(i) = 00 frmean (:)”

@ initialization: a(®) = Ho TIEO) ~ Gamma (ay, b,) p(o) =0

@ for k=0,1,... up to convergence or k;,qz:
@ update 7, using the Gibbs sampler:
T,£k+1) ~ p(T,Ek) |a:, y, a® ) (11)

@ generate the new proposals:

a(kJrl) "’N(a(k),ﬂ) p(kJrl) "’N(p(k),ﬁl) (12)

© calculate the acceptance probability:

p ('y |w7p('“1), (kD) kD) ) p(p* D) p(alk D)
p(y|w,p(’“),a<’“),n(k”)) p(p®)p(a®)

(13)

v =min| 1,

@ accept the new proposal if v >4 [0,1] and 0< p <10



Recap

® froise(7i) =0, == we know all the conditional distributions == we can use
Gibbs samplers for a and 7,
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® fnoise(#;) = opxf = we don’t know the conditional distribution for p = we
shall use Gibbs samplers for a and 7,,, but a MH sampler for p



Recap

® froise(7i) =0, == we know all the conditional distributions == we can use
Gibbs samplers for a and 7,

® fnoise(#;) = opxf = we don’t know the conditional distribution for p = we
shall use Gibbs samplers for a and 7,,, but a MH sampler for p

® fuoise(Zi) = 0y fmean (2;)” == we don't know the conditional distributions for c
and p = we shall use a Gibbs sampler for 7,,, and MH samplers for a and p



Test case: artificial setup

3
fmean(xi) = Z Oénﬂf? fnoise(xi) = Jufmean (xz)p
n=0
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Test case: artificial setup

3
fmean(xi) = Z Oénl’? fnoise(ivi) = Jl/fmean (xz)p
n=0

how does p (p, 7, |,y ) look like?
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Test case: artificial setup - how does p(p, 7, |x,y) look like? (M =50)

3
fmean(xi) = Z Oénl”? fnoise(ivi) = Jl/fmean (xz)p
n=0
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Test case: artificial setup - how does p(p, 7, |x,y) look like? (M =900)

3
fmean(xi) = Z Oénl’? fnoise($i) = Jufmean (xz)p
n=0
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Test case:

experimental setup

speed = constant

29



Test case: experimental results

Posteriors for ag, ar1 and ap

:3 600 [ | i oy
S 400 - )
= 200 A | )
z_d/ oL | — \ : 4 O-meean(xi)
S 0 0.02 0.04 0.06 0.08 0.1
:3 600 [ ‘ ] oy
=400 1 8 p
— 200 | )\ . vt )
zg 1= | ——— S | = Umeean(-Ti)
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)
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Test case: experimental results

Posteriors for p and 7,
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How shall we use the estimates?

—

e.g., X;=argmaxp
$k€X

(xi |y’iaaaUV7p)

(14)
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Test case: experimental

measured distance [m]
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Test case: experimental results

MSE performance on the test set

Oy Uul‘f O-l/fmean(l'i)p

1397.59261 50.14214  3220.53529
3.15795 0.27043 0.02243
0.49000 0.00507 0.00185
0.48642 0.00404 0.00088
0.48714 0.00220 0.00092
0.48675 0.00229 0.01049
0.48754 0.00285 0.45820
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For completeness: computational times for estimating the models
Matlab on a standard laptop (Intel quad core i7-2640 CPUs 2.8GHz)

° ——
. a,,xf

. | __O'meean(l'i)p

20 -

computation time [sec]

model order [N ]
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Conclusions

@ heteroskedastic measurement noise + polynomial bias == great flexibility
@ price: need for “advanced” estimation schemes
@ Bayesian approach enables exploiting prior information

@ meaningful results on both synthetic and field usecases
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Conclusions

@ heteroskedastic measurement noise + polynomial bias == great flexibility

@ price: need for “advanced” estimation schemes

@ Bayesian approach enables exploiting prior information

@ meaningful results on both synthetic and field usecases

Next (ongoing) step: what if the x;'s are unknown?
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