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Motivations

diminish energy requirements

maintain comfort levels
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Methodology (big vision)

How to, for HVAC systems?

� exploit buildings thermal capacity �

use forecastsuse accurate models

use Model Predictive Control (MPC)
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Our contributions

address uncertainties in the forecasts (→ stochastic MPC)

consider a peculiar description of these uncertainties
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Example in words

measurements

now
time

external
temperature
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Example in pseudo-formulas

minimize (energy usage over the forecast horizon)

subject to: P [dynamics will lead to comfort violations] ≤ ε
actuation is constrained

building

controller

(forecasted) disturbances
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Problems

“subject to P [dynamics will lead to comfort violations] ≤ ε”

may be a formidably complicated constraint

plausible solution: simplify it
caveat: do not oversimplify it
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Aim

find controllers
accounting for forecasts uncertainties

and handling the associated computational problems
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Methodology (for the current problem)

perform realistic simulations

describe forecasts uncertainties opportunely

approximate P [comfort violations] ≤ ε using scenarios
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Room model
Our choice

Necessity: model should be accurate and computationally tractable
Our choice: RC-network (R ↔ thermal resistance, C ↔ thermal
capacitance)

Troom
wall
wall
wall
wall

window window window window

internal gains

actuation
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Wall model

hout Rwall hin

Cwall out Cwall in

Tair out
Twall out Twall in

Tair in

Window model

Rwin

(sun)

Tair out

Tair in
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Building model
Validation against IDA-ICE
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simpler than commercial SW exploiting more complex libraries
captures the most important buildings dynamics’
characteristics
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Describing uncertainties through Copulas
Motivations

Gaussian Clayton
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Describing uncertainties through Copulas
Formalism

Fw(a1, . . . , aK ) = C (Fw1(a1), . . . ,FwK (aK )) C : [0, 1]K 7→ [0, 1]

In words, Joint distribution = Copula + Marginal distributions

Pros
completely generic
separated modeling / learning of marginals / dependencies

Cons
generating scenarios is computationally more
expensive
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Scenario-based MPC
A cascade of two controllers

Thanks to the physics

IAQ control problem
CO2 control problem

thermal control problem

Thanks to the linear models
min

U
EPT

roomU
s.t. P [GuU + Gw W − g ≤ 0] ≥ 1− α

FU ≤ f
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Scenario-based MPC
Obtaining numerically tractable problems

Replace P with empirical P:

min
U,τ

EPT
roomU

s.t. FU ≤ f
τ + α−1 ∑Ns

i=1 N−1
s zi ≤ 0

G j
uU + G j

w W i − g j − τ − y j
i ≤ 0

zi ≥ y j
i y j

i ≥ 0 zi ≥ 0

scenarios := independent extractions of the disturbances
from their joint distributions (i.e., copulas!!)
Ns := number of i.i.d. scenarios extracted (the more, the
better)

18



Numerical results

Room (hvac.ee.kth.se):

Controllers:
Performance Bound (PB): has perfect forecasts
Certainty Equivalence (CE): neglects forecasts uncertainties
SMPC: our approach
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Numerical results
Assessment of performance
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SMPC1: α = 0.09, 60 scenarios
SMPC2: α = 0.06, 120 scenarios
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Summary

aim: include forecasts’ uncertainties

use scenario-based MPC

generate scenarios using copulas

Future extensions
real tests (in progress right now)
extend to buildings
learn copulas cooperatively
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