A Scenario-based Predictive Control Approach to Building HVAC Management Systems

Alessandra Parisio Marco Molinari **Damiano Varagnolo** Karl H. Johansson

KTH Royal Institute of Technology

CASE 2013 – 19 August

Thanks to...

Motivations

Motivations

diminish energy requirements

Motivations

diminish energy requirements

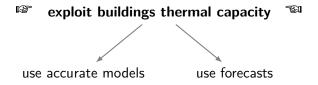
maintain comfort levels

How to, for HVAC systems?

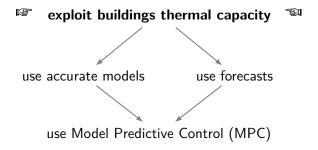
How to, for HVAC systems?

exploit buildings thermal capacity

How to, for HVAC systems?



How to, for HVAC systems?



Literature review

Ma (2012)

Fast stochastic MPC with optimal risk allocation applied to building control systems

Conference on Decision and Control

Oldewurtel (2012)

Use of model predictive control and weather forecasts for energy efficient building climate control

Energy and Buildings

Salsbury (2012)

Predictive control methods to improve energy efficiency and reduce demand in buildings

Computers and Chemical Engineering

Mady (2011)

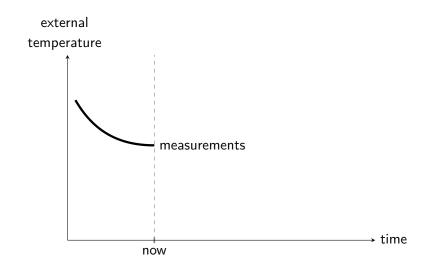
Stochastic model predictive controller for the integration of building use and temperature regulation

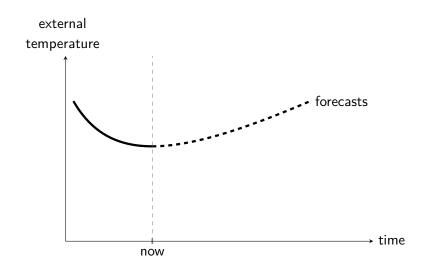
Conference on Artificial Intelligence

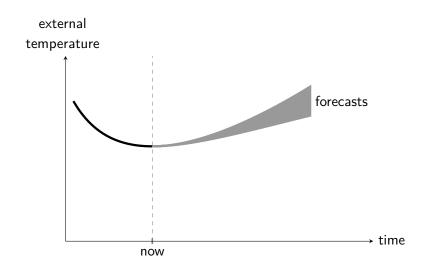
Our contributions

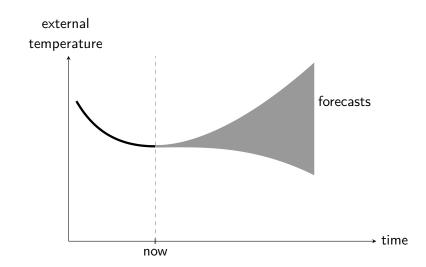
 \bullet address uncertainties in the forecasts (\to stochastic MPC)

• consider a peculiar description of these uncertainties





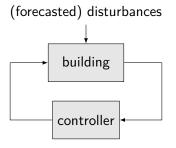




Example in pseudo-formulas

minimize (energy usage over the forecast horizon)

subject to: $\mathbb{P}\left[\text{dynamics will lead to comfort violations}\right] \leq \varepsilon$ actuation is constrained



Problems

"subject to $\mathbb{P}\left[\text{dynamics will lead to comfort violations}\right] \leq \varepsilon$ " may be a formidably complicated constraint

Problems

"subject to $\mathbb{P}\left[\text{dynamics will lead to comfort violations}\right] \leq \varepsilon$ " may be a formidably complicated constraint

plausible solution: simplify it caveat: do not oversimplify it

.

Aim

find controllers
accounting for forecasts uncertainties
and handling the associated computational problems

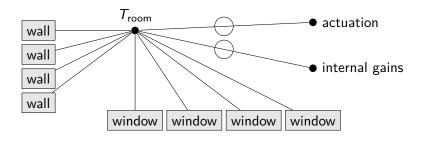
Methodology (for the current problem)

- perform realistic simulations
- describe forecasts uncertainties opportunely
- ullet approximate $\mathbb{P}\left[\mathsf{comfort} \ \mathsf{violations} \right] \leq arepsilon \ \mathsf{using} \ \mathsf{scenarios}$

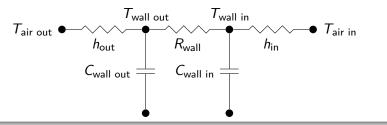
Room model

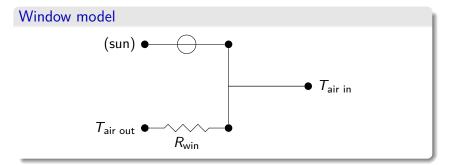
Our choice

Necessity: model should be accurate and computationally tractable Our choice: RC-network (R \leftrightarrow thermal resistance, C \leftrightarrow thermal capacitance)



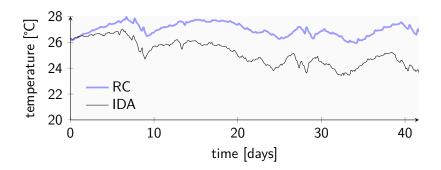
Wall model





Building model

Validation against IDA-ICE

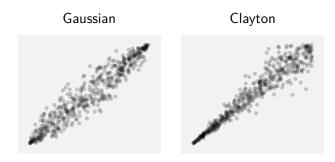


- simpler than commercial SW exploiting more complex libraries
- captures the most important buildings dynamics' characteristics

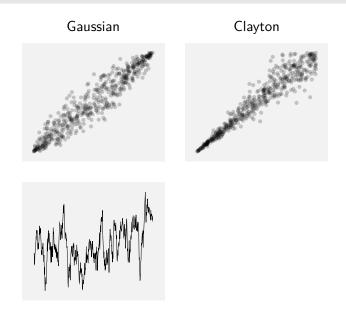
Motivations

${\sf Gaussian}$

Motivations



Motivations



Describing uncertainties through Copulas Motivations

Gaussian Clayton

Formalism

$$\mathbb{F}_{\boldsymbol{w}}(a_1,\ldots,a_K) = \mathbb{C}\left(\mathbb{F}_{w_1}(a_1),\ldots,\mathbb{F}_{w_K}(a_K)\right) \qquad \mathbb{C}:\left[0,1\right]^K \mapsto \left[0,1\right]$$

In words, Joint distribution = Copula + Marginal distributions

Formalism

$$\mathbb{F}_{\textit{w}}(\textit{a}_{1},\ldots,\textit{a}_{\textit{K}}) = \mathbb{C}\left(\mathbb{F}_{\textit{w}_{1}}(\textit{a}_{1}),\ldots,\mathbb{F}_{\textit{w}_{\textit{K}}}(\textit{a}_{\textit{K}})\right) \qquad \mathbb{C}:\left[0,1\right]^{\textit{K}} \mapsto \left[0,1\right]$$

In words, Joint distribution = Copula + Marginal distributions

Pros

- completely generic
- separated modeling / learning of marginals / dependencies

Formalism

$$\mathbb{F}_{\boldsymbol{w}}(a_1,\ldots,a_K) = \mathbb{C}\left(\mathbb{F}_{w_1}(a_1),\ldots,\mathbb{F}_{w_K}(a_K)\right) \qquad \mathbb{C}:\left[0,1\right]^K \mapsto \left[0,1\right]$$

In words, Joint distribution = Copula + Marginal distributions

Pros

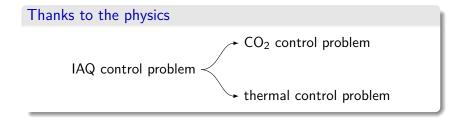
- completely generic
- separated modeling / learning of marginals / dependencies

Cons

 generating scenarios is computationally more expensive

Scenario-based MPC

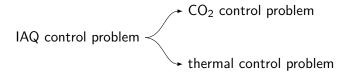
A cascade of two controllers



Scenario-based MPC

A cascade of two controllers

Thanks to the physics



Thanks to the linear models

$$\label{eq:local_equation} \begin{split} \min_{\pmb{U}} \quad & \pmb{E} \pmb{P}_{\mathsf{room}}^{\mathsf{T}} \pmb{U} \\ \mathsf{s.t.} \quad & \mathbb{P} \left[\pmb{G}_{\pmb{U}} \pmb{U} + \pmb{G}_{\pmb{w}} \pmb{W} - \pmb{g} \leq 0 \right] \geq 1 - \alpha \\ & \pmb{F} \pmb{U} \leq \pmb{f} \end{split}$$

Scenario-based MPC

Obtaining numerically tractable problems

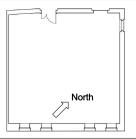
Replace \mathbb{P} with empirical \mathbb{P} :

$$\begin{aligned} & \underset{\boldsymbol{U},\tau}{\min} & \quad \boldsymbol{E}\boldsymbol{P}_{\text{room}}^{T}\boldsymbol{U} \\ & \text{s.t.} & \quad \boldsymbol{F}\boldsymbol{U} \leq \boldsymbol{f} \\ & \quad \tau + \alpha^{-1} \sum_{i=1}^{N_s} N_s^{-1} z_i \leq 0 \\ & \quad \boldsymbol{G}_{u}^{j}\boldsymbol{U} + \boldsymbol{G}_{w}^{j}\boldsymbol{W}_{i} - \boldsymbol{g}^{j} - \tau - y_{i}^{j} \leq 0 \\ & \quad z_{i} \geq y_{i}^{j} \quad y_{i}^{j} \geq 0 \quad z_{i} \geq 0 \end{aligned}$$

- scenarios := independent extractions of the disturbances
 from their joint distributions (i.e., copulas!!)
- N_s := number of i.i.d. scenarios extracted (the more, the better)

Numerical results

Room (hvac.ee.kth.se):

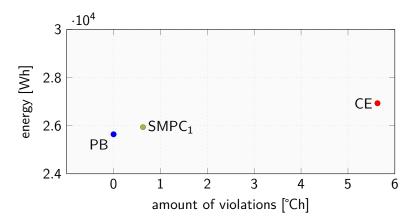


Controllers:

- Performance Bound (PB): has perfect forecasts
- Certainty Equivalence (CE): neglects forecasts uncertainties
- SMPC: our approach

Numerical results

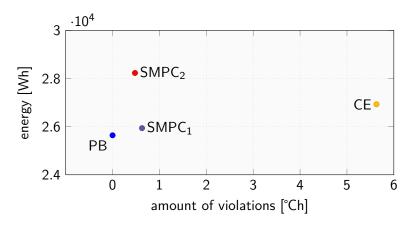
Assessment of performance



• SMPC₁: $\alpha = 0.09$, 60 scenarios

Numerical results

Assessment of performance



- SMPC₁: $\alpha = 0.09$, 60 scenarios
- SMPC₂: $\alpha = 0.06$, 120 scenarios

Summary

Summary

aim: include forecasts' uncertainties

use scenario-based MPC

generate scenarios using copulas

Summary

aim: include forecasts' uncertainties

use scenario-based MPC

generate scenarios using copulas

Future extensions

- real tests (in progress right now)
- extend to buildings
- learn copulas cooperatively

A Scenario-based Predictive Control Approach to Building HVAC Management Systems

Alessandra Parisio Marco Molinari **Damiano Varagnolo** Karl H. Johansson

KTH Royal Institute of Technology

CASE 2013 - 19 August

damiano@kth.se hvac.ee.kth.se

