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Abstract— To maintain and organize distributed systems it
is necessary to have a certain degree of knowledge of their
status like the number of cooperating agents. The estimation
of this number, usually referred as the network size, can pose
challenging questions when agents’ identification information
cannot be disclosed, since the exchanged information cannot
be associated to who originated it. In this paper we propose
a totally distributed network size estimation strategy based
on statistical inference concepts that can be applied under
anonymity constraints. The scheme is based on the following
paradigm: agents locally generate some Bernoulli trials, then
distributedly compute averages of these generated data, finally
locally compute the Maximum Likelihood estimate of the
network size exploiting its probabilistic dependencies with the
previously computed averages. In this work we study the
statistical properties of this estimation strategy, and show
how the probability of returning a wrong evaluation decreases
exponentially in the number of locally generated trials. Finally,
we discuss how practical implementation issues may affect the
estimator, and show that there exists a neat phase transition
between insensitivity to numerical errors and uselessness of the
results.

Index Terms— anonymous networks, size estimation, num-
ber of agents, number of nodes, sensor networks, consensus,
distributed estimation, distributed identification.

I. INTRODUCTION

Increasing scalability, robustness and flexibility requests
drawn the attention of the scientific communities to net-
worked systems, where a multitude of agents collaborate in
order to achieve a common task. Brilliant examples of such
collective entities are the Internet, the mobile telephony, the
peer-to-peer networks.

Despite their appealing qualities like the robustness to
failures, networked systems come with peculiar problematics
posing interesting yet difficult questions such as the privacy
- cooperation dichotomy. Indeed, collaboration may be ob-
structed when arising privacy concerns push the agents to
be anonymous: a significative example is about buildings
heating/cooling control, where the need for the knowledge
of the rooms occupancies conflicts with people’s need of
being not gauged.

In this work we develop a general purely distributed net-
works size estimation strategy. In the proposed scheme each
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node executes the same operations, moreover the following
constraints are explicitly taken into account: anonymity,
small computational/memory/communication capabilities, no
existence of leaders or overlay structures, very limited knowl-
edge of the network topology as in ad-hoc and mobile
networks. Our labor is thus in the framework of the so-called
anonymous networks [1], [2], where agents’ identification
information (ID) is or not unique or not exploitable. We
notice that this framework is often used to obtain com-
putability proofs for distributed algorithms, see e.g. [3],
[4]. Our contribution originates from [5], and addresses the
same problem of distributed size estimation under bounded
computational, memory and bandwidth resources constraints.
The estimation strategy can be summarized as follows:

1) each agent i = 1, . . . , S locally generates a vector of
M ∈ N+ i.i.d. Bernoulli trials yi,m ∈ {0, 1};

2) starting from the values yi,m, agents distributedly com-
pute the M averages of the locally generated data, i.e.
the various fm = 1

S

∑S
i=1 yi,m;

3) since the joint probability of the values fm’s depends on
S, agents locally obtain an estimate Ŝ of S via statistical
inference.

(We notice that we consider S, the network size, as a deter-
ministic but unknown parameter. Ŝ is nonetheless a random
variable.) This strategy is similar to the one in [5]: here
we consider Bernoulli trials rather than general continuous
random variables. But even if this seems a rather small
change, the resulting estimator have completely different
structure and properties. Interestingly, we show how these
properties are strongly connected with the Newton-Pepys
problem [6] and the distribution of the totatives of the
network size [7] (more details in the following sections).

Literature review: we briefly review the relevant lit-
erature on the estimation of network sizes, starting from
recalling that in general the estimation of the size of a group
using statistical inference is an old problem that can be traced
back at least to the German tank problem during World War
II [8].

We notice that most of the proposed strategies sample
a subset of the whole available information because of
querying all the agents may be too costly. E.g., network
traffic flow estimation is usually performed from data packets
that are randomly sampled from the main stream [9].

Several sampling methods are based on random walk
strategies [10], [11] [12], relying on passing a token through
the network to collect information each time it visits an
agent. There are mainly two different approaches [13]: the
return-time one, exploiting the number of steps made by



the random walk of the token to return to the sender, and
the time-to-vanish one. In this method the token contains
a counter that is decreased every time the token is passed.
The decrease is stochastically proportional to the number
of neighbors of the receiving node. The network size is then
inferred exploiting the statistical properties of the return-time
and time-to-vanish.

We notice that sampling methods have been proposed also
in conjunction to randomly generated IDs [14], [15], [16]. In
general it is possible to map agents’ random IDs into [0, 1],
and then query the network for who have its ID belonging
to a certain given interval I ⊂ [0, 1]. From the answer and
the size of I it is then possible to infer the network size.
Obviously the size of I dominates the (stochastic) amount
of information to be exchanged and the performances of the
algorithm.

Capture-recapture strategies, sometimes referred also as
Lincoln-Petersen methods [17], can also be used for size
estimation purposes. Here a master disseminates a certain
number of “seeds” (messages) that are then passed among
agents. The strategy is then to ask to a certain set of agents
whether they hold a seed or not. From the number of positive
answers it is possible to estimate the size of the network [18].
We notice that these methods are strongly connected to the
sampling of finite populations [19]: each of S individuals
have its weight yi and contributes to the population total, de-
noted by τ :=

∑S
i=1 yi. A classical estimator for τ is the so-

called Hansen-Hurwitz estimator [20]: select k individuals
with selection probabilities pi, and then estimate τ by means
of τ̂ := 1

n

∑n
i=1

yi

pi
. In the network size estimation problem

yi = 1 and pi is the inverse of the quantity to be estimated.
A similar approach is the Horvitz-Thompson estimator [21],
where τ̂ :=

∑n
i=1

yi

πi
with πi an opportune modification of

the previous pi’s, see e.g. [22]. These methods are related to
the so-called inverted birthday paradox. The direct paradox,
called also the birthday problem, indicates the fact that the
probability that two persons share the birthday in a group
of 23 people is approximatively 1

2 . The inverse paradox
indicates the fact that the number of how many people share
the birthday date gives statistical information on the size of
the group [23], [24].

Contributions: the strategy we propose is similar in
spirit to the ones proposed in [25], [26], and belongs to
the category of estimators that apply distributed consensus
algorithms to randomly generated numbers, see, e.g., [27],
[28]. In particular we show that exploiting average consensus
on Bernoulli trials it is possible to obtain a Maximum
Likelihood (ML) estimator of the network size which prob-
ability of error decays exponentially with the amount of
locally generated data. (Remarkably, none of the strategies
mentioned in the literature survey achieve an exponentially
decaying error rate.) We also analyze the robustness of the
offered strategy to numerical errors, and show that there is
a neat phase transition between insensitiveness to errors and
loss of meaningfulness of the final results.

The structure of the paper is the following. In Sec. II
we develop the main algorithm starting from the single

generation case to arrive to the general multiple generations
case. In Sec. III we consider the sensitivity of the strategy
to numerical errors, and then in Sec. IV we draw some
concluding remarks1.

Remark 1. The estimator proposed in this work is coher-
ent with the following impossibility result from [29], see
also [30]:

Theorem 2 (Thm. 9 [29]). There exists no algorithm that
is able to compute the number of nodes in an anonymous
network that terminates with the correct result for every
finite execution with probability one and that has a bounded
average bit complexity (i.e. s.t. the average number of bits
used by the algorithm is bounded).

Indeed, we propose an estimator whose probability of error
can be made arbitrarily close to zero.

II. THE ESTIMATION ALGORITHM

In this section the network will satisfy the following simpli-
ficative assumptions:

Assumption 3. There are no quantization effects, i.e. num-
bers are represented by an unlimited number of bits. Con-
sensus algorithms are performed using an infinite number of
consensus steps. Communication among agents is reliable,
i.e. there is no packet loss. Finally, there exists an upper
bound on the number of agents that actually constitutes the
network, i.e. Smax ∈ N+ s.t. S ≤ Smax is known.

We will always assume that the network is not-time vary-
ing and capable to compute averages by means of average
consensus algorithms [31], [32].

For ease of comprehensibility, we start considering the
case where each agent generates only one scalar.

A. The single generation case: M = 1

As introduced in Sec. I, if each agent i locally generates

yi ∼ B (p) i.i.d. (1)

with B (p) the Bernoulli distribution with success probability
p, then

S∑
i=1

yi ∼ Bin (S, p) , (2)

with Bin (S, p) the binomial distribution of S experiments
with success probability p. Assume that, by means of an
average-consensus on the various yi ran under the previous
simplificative assumptions, agents compute

f :=
1
S

S∑
i=1

yi . (3)

Since
(∑S

i=1 yi

)
∈ {0, . . . , S}, it follows that it must be

fS ∈ {0, . . . , S}. If S is unknown, it follows that f must

1The proofs of the proposed propositions can be found in the homony-
mous technical report available on the authors’ webpages.



belong to the finite set

FSmax :=
{
f =

k

S
s.t. k = 0, . . . , S, and S = 1, . . . , Smax

}
.

(4)
It is straightforward that if S is fixed then f corresponds to
the exact fraction of agents generating ones. It also follows
that the probability mass function for f is

P [f ; S, p] =


(
S

fS

)
pfS (1− p)S−fS if

{
fS ∈ N+

f ∈ [0, 1]
0 otherwise.

(5)
We notice that P [f ; S, p] 6= 0 if and only if there exists
a network of S agents s.t. exactly fS of those generated
yi = 1 while the rest generated yi = 0.

If f is observed, p is known, and S is a guess on the actual
number of agents, then (5) represents the likelihood of the
hypothesis S. A remarkable fact is that, if f is observed and
p is known, the set If of the hypotheses S having strictly
positive likelihood is finite, and given by

If := {S ≤ Smax | P [f ; S, p] > 0}
= {S ≤ Smax | fS ∈ N+}

=

S = `S̄ ≤ Smax |


` ∈ N+

fS̄ = k̄(
k̄, S̄

)
are coprime

 .

(6)
The variable S̄ = S̄(f) introduced by definition (6) plays
a key role in our algorithm. First of all, it is unique and it
depends only on f , not on p. Moreover S ∈ If , therefore
the true hypothesis S must be a multiple of S̄. Finally, S̄
is the ML estimator for S independently of the particular
realizations of the yi, as shown in Fig. 1 and formally stated
in proposition 4.
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Fig. 1. Graphical representation of the likelihood given in (5) for f = 0.8,
p = 0.5. In this case, S̄ = 5.

Proposition 4. Given the likelihood in (5), the ML estimator
is given by

Ŝ(f ; p) := arg max
S∈If

P [f ; S, p] = min If = S̄(f) (7)

for every p ∈ [0, 1]. This strategy cannot overestimate the
true S and is also biased, i.e.

Ŝ(f ; p) ≤ S, Ef
[
Ŝ(f ; p)

]
< S for S ≥ 2 ,

where the first inequality should be intended as no outcomes
of Ŝ can be strictly bigger than S.

(7) has the following Occam’s razor interpretation: if f
is the measured fraction of agents generating ones, then Ŝ
is the smallest (“simplest”, hence most probable) network
that could have generated that fraction f . We notice that
this motivates the biasedness of Ŝ, since this property is
connected to the fact that the choice always selects the
simplest hypothesis among the plausible ones.

Remarkably, using the same techniques of Prop. 4 we
can derive the following corollary 5, that can be used
to generalize the so called Newton-Pepys problem, an old
question about if it is more probable to have at least one
six when throwing six dice or to have at least two six when
throwing twelve dice [6].

Corollary 5.

P
[
f ; ν Ŝ, p

]
≥ P

[
f ; κ ν Ŝ, p

]
(8)

∀κ, ν ∈ N, p ∈ [0, 1].

As it can be seen in Fig. 2, the map Ŝ = S̄(f) is extremely
nonlinear. Without bounds on the maximal number of agents,
it is defined over the positive rational numbers in [0, 1]. If
the upper bound Smax is known, Ŝ is defined over the set
FSmax defined in (4).

B. Performances of the estimation algorithm

Although Ŝ does not explicitly depend on p, its performance
does, and we are thus interested in optimizing this parameter.
Consider then as the performance index the estimation error
probability

α(p, S) := P
[
Ŝ 6= S ; S, p

]
. (9)

Considering that Ŝ = S̄(f) = S if and only if fS = k and
the pair (k, S) is coprime, defining

FS := {f | fS = k with (k, S) coprime} , (10)

it follows that

α(p, S) := P
[
Ŝ 6= S ; S, p

]
= P [f /∈ FS ; S, p] . (11)

We have thus a numerical procedure to compute the perfor-
mance index (i.e. the estimator error probability) α(p, S): a)
compute the set FS which does not depend on p, b) compute
P [f /∈ FS ; S, p] exploiting (5).

We notice now that the error probability α(p, S) is not
known a priori since S is not known. To optimize p we can
thus exploit the following classical frequentists approach: the
optimal p is the one that minimizes the largest error over all
possible S ≤ Smax. The strategy is then to compute p∗ as
the minimizer of

α∗(p, Smax) := maxS∈{1,...,Smax} α(p, S)
= maxS∈{1,...,Smax} P

[
Ŝ 6= S ; S, p

]
.
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Fig. 2. ML estimator bS as a function of f for Smax = 20.

The solution is thus{
p∗(Smax) := argminp∈[0,1/2] α

∗(p, Smax)
ᾱ(Smax) := α∗ (p∗(Smax), Smax)

(12)

where we restricted to the interval [0, 1/2] since α(p, S) is
symmetric with respect to p = 1/2.

Analytical expressions for the previous quantities are not
available, but some considerations can be extrapolated from
classical results on the distribution of what are called the
totatives of the actual S. More precisely, the totatives of S
are the positive integers smaller than S and relatively prime
to S. The totient function, usually denoted with φ(S) and
also called the Euler phi-function, indicates the number of
totatives of S. Noticeably, in our case φ(S) = |FS |, i.e.
φ(S) indicates also the cardinality of the set FS . The totient
function has been well studied in the context of Number
Theory [33, p. 15] [7], [34, Chap. 8].

A result that is extremely useful for our purposes is given
in [7], where the author showed that for high S,the distribu-
tion of the totatives of S in {1, . . . , S} is approximatively
uniform. An other important result is the bound offered
in [34, Thm. 8.7]:

φ(S) >
S

eγ log logS + 3
log log S

(13)

where γ ' 0.577 is the so-called Euler-Mascheroni constant.
By numerical inspection, from (13) it follows φ(S)/S >
0.15 for S ≤ 1010, i.e. for all the networks that are
meaningful for our approach. With simple numerical com-
putations it is easy to check that if p ∈ (0.25, 0.75) then
P [f ∈ FS ; S, p] > 0.15 for all S, i.e., for the same p’s,
α(p, S) < 0.85. An example of this fact can be seen in
Fig. 3.

As it can be seen in Fig. 3, the choice for p ∈ (0.25, 0.75)
not very critical. In fact, for p in this interval, the gap between
the maxima and minima of maxS α(p, S) is small. The
important point is that the worst probability of error, which
is a non-decreasing function of Smax, is bounded away from
one for reasonably large Smax. An important consideration is
that if S is prime then φ(S) = S − 2. Moreover the unique
cases implying Ŝ 6= S happen when the yi’s are all zeros
or all ones. As a consequence, for prime S’s α(p, S) can be
extremely close to zero.

In Fig. 4 we plot how α∗
(

1
2 , Smax

)
and ᾱ(Smax) depend

on Smax. As noticed before, both the quantities always stay
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Fig. 3. α(p, S) = P
h bS 6= S ; p

i
as a function of p for various

values of S, and α∗(p, 30) = maxS∈{1,...,30} α(p, S). The optimal point
(p∗, ᾱ(30)) ≈ (0.33, 0.72) is indicated by the blue star and the black
dots on the axes. The properties of the totient function assure that if p is
sufficiently far from 0 and 1 then α(p, S) < 0.85 uniformly in S.

below 0.85, with ᾱ(Smax) being just a little better than
α∗
(

1
2 , Smax

)
, specially for large S. In this paper we do not

further analyze the connections between φ(Smax) and the
changes of p∗ and α∗, and consider them as future works.
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Fig. 4. Dependency of p∗(Smax), ᾱ(Smax) and α∗(0.5, Smax) on Smax.
Circles on the abscissas axis indicate for which Smax the former quantities
change. This happens when the increase of Smax implies to consider an S
having a particularly low φ(S).

C. The multiple generations case: M > 1
If agents generate a single sample yi ∼ B (p), the error
probability P

[
Ŝ 6= S ; p

]
might be equal to ᾱ(Smax). Since

this probability of error might be fairly high, the estimation
performance seems to be extremely poor. The question is
thus: is it possible to ameliorate the performance letting
the agents generate M i.i.d. values yi,1, . . . , yi,M ∼ B (p)
and compute, by means of average-consensus strategies,
fm = 1

S

∑
i yi,m, for m = 1, . . . ,M?



Let f := (f1, f2, . . . , fM ). The ML estimator Ŝ can be
computed as follows: since the various yi,m are independent,
the likelihood can be factorized, i.e.

P [f ; S, p] =
M∏
m=1

P [fm ; S, p] . (14)

This factorization implies that the novel hypothesis space
is the intersection of the hypotheses spaces Ifm . In other
words, S has non-zero likelihood only if S ∈

⋂M
m=1 Ifm .

With the same Occam’s razor interpretation of Sec. II-A, the
ML estimator Ŝ is still the simplest plausible hypothesis:

Proposition 6. Given the likelihood in (14), then the ML
estimator is given by

Ŝ(f) := arg maxS∈TM
m=1 Ifm

P [f ; S, p]

= min
(⋂M

m=1 Ifm

)
= LCM

(
S̄(f1), . . . , S̄(fM )

) (15)

for every p ∈ [0, 1], where LCM (·) is the least common
multiple operator. This strategy cannot overestimate S and
is also biased, i.e.

Ŝ(f) ≤ S, Ef
[
Ŝ(f)

]
< S for S ≥ 2 .

The computation of the parameter p that minimizes the
worst error probability of the novel ML estimator can be
made mimicking the derivations made for the scenario M =
1. Alternatively, it is possible to exploit the analysis of the
previous section to obtain an interesting result: start defining
S̄(fm) conformably to (7), then define

S̃(f) := max
(

min
m
Ifm

)
= max

{
S̄(f1), . . . , S̄(fM )

}
.

(16)
S̃(f) is s.t. S̃(f) ≤ Ŝ(f) ≤ S, and this implies that the
probabilities of error for the two estimators S̃(f) and Ŝ(f)
satisfy

P
[
Ŝ(f) 6= S ; S, p

]
≤ P

[
S̃(f) 6= S ; S, p

]
.

E.g., if S = 6 and M = 2 then the event f1 = 1
2 , f2 =

1
3 leads to Ŝ(2, 3) = LCM (2, 3) = S, while S̃(2, 3) =
max{2, 3} = 3 6= S.

Consider now that

P
[
S̃(f) 6= S ; S, p

]
= P

[
S̄(fm) 6= S ∀m ; S, p

]
=

(
P
[
S̄(fm) 6= S ; S, p

])M
=

(
α(p, S)

)M
.

This indicates that the probability that Ŝ is wrong exponen-
tially vanishes with the amount of information that agents
exchange. More formally:

Proposition 7. If yi,1, . . . , yi,M ∼ B (p∗), with p∗ =
p∗(Smax) and ᾱ = ᾱ (Smax) defined in (12) then

(1− p∗)SmaxM ≤ P
[
Ŝ(f) 6= S ; p∗,M

]
≤ (ᾱ)M (17)

Speculations on the nature of ᾱ and p∗ lead to the conclu-
sion that the upper bound in (17) is pessimistic. Consider in
fact that (α∗)M represents the worst-case probability of the
event Ŝm 6= S for all m. As shown in a previous example,
this is a necessary but not sufficient condition for the event
Ŝ 6= S. Now increasing M implies that the number of
the cases where Ŝ = S even if Ŝm 6= S also increases.
This eventually leads to discrepancies between (α∗)M and
the actual P

[
Ŝ 6= S ; p∗,M

]
. Fig. 5 supports this intuition,

and shows that P
[
Ŝ 6= S ; p∗,M

]
appears to decay to zero

faster than what indicated in Prop. 7.
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as a function of M and for various values

of S, for the case Smax = 20, and its lower and upper bounds described
in (17).

III. NUMERICAL CONSIDERATIONS

Up to now we exploited assumptions 3, that in practical
implementations will surely be violated. The natural question
is then what are the effects of these violations.

Let fi,m, m = 1, . . . ,M , i = 1, . . . , S be the quantities
actually computed by the various agents under realistic
assumptions such as packet losses, quantization effects, and
finite numbers of communications. (Notice that we still
assume the existence of the bound Smax.) Modeling the
effects of a finite number of consensus iterations and the
effects of packet losses with multiplicative errors δi,m, and
modeling quantization errors as additive noises ∆i,m, we
obtain the model

fi,m = (1 + δi,m) fm+∆i,m m = 1, . . . ,M, i = 1, . . . , S .
(18)

Assume then the knowledge on upper bounds δmax and ∆max
s.t.

|δi,m| < δmax, |∆i,m| < ∆max . (19)

Let the agents map the actually computed averages fi,m into
an element fqi,m of the alphabet FSmax via the natural relation

fqi,m := arg min
f∈FSmax

|f − fi,m| . (20)

It is then possible to prove the following:

Proposition 8. If δmax+∆max <
1

2Smax (Smax−1)
then fqi,m =

fm.

Prop. 8 assures that if errors δmax and ∆max are sufficiently
small then the measured averages fi,m are mapped into



the elements fqi,m that would have been computed under
idealized conditions. Then Ŝ will give exactly the same
results that would be obtained in absence of errors.

Vice versa, if the errors are not sufficiently small then
the various fi,m can be mapped incorrectly. Due the strong
nonlinearities of the map 2 and of the operator LCM (·)
in (15), the differences between the computed Ŝ and the
results that would be obtained in absence of errors literally
explode. The result is that if the conditions expressed in
Prop. 8 cannot be assured, then the estimation strategy here
proposed is useless.

IV. CONCLUSIONS

In this paper we shown how it is possible to estimate the
size of an anonymous network computing the averages of a
set of independent Bernoulli trials. Despite its simplicity, the
derived estimator has several very appealing qualities: first of
all, its implementation on actual devices is naïve. Moreover,
thanks to the fact that the probability of error vanishes
exponentially with the number of generated Bernoulli trials,
its estimation performances can be extremely good even
exchanging a very small amount of information.

All these nice properties come among with a bittersweet
fact that reduces the field of applicability of the strategy to
small networks. In fact, due to the discontinuous and strongly
nonlinear nature of estimation map, the estimator is either
insensible to numerical errors or completely useless.

This naturally leads to consider the following important
future works: first of all it is necessary to understand how it
is possible to push the sensitivity phase transition point as far
as possible. Moreover a requisite for actual implementations
is the development of strategies detecting (and possibly
correcting) these sensitivity problems.
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