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Abstract1

Heating, Ventilation and Air Conditioning (HVAC) sys-2

tems play a fundamental role in maintaining acceptable ther-3

mal comfort and Indoor Air Quality (IAQ) levels, essentials4

for occupants well-being. Since performing this task implies5

high energy requirements, there is the need for improving the6

energetic efficiency of existing buildings. A possible solu-7

tion is to develop effective control strategies for HVAC sys-8

tems, but this is complicated by the inherent uncertainty of9

the to-be-controlled system. To cope with this problem, we10

design a stochastic Model Predictive Control (MPC) strategy11

that dynamically learns the statistics of the building occu-12

pancy and weather conditions and uses them to build proba-13

bilistic constraints on the indoor temperature and CO2 con-14

centration levels. More specifically, we propose a random-15

ization technique that finds suboptimal solutions to the gen-16

erally non-convex stochastic MPC problem. The main ad-17

vantage of this method is the absence of apriori assumptions18

on the distributions of the uncertain variables, and that it can19

be applied to any type of building. We investigate the pro-20

posed approach by means of numerical simulations and real21

tests on a student laboratory, and show its practical effective-22

ness and computational tractability.23

Keywords24

Randomized model predictive control, HVAC control,25

Copulas, statistics26

1 Introduction27

It is well known that Heating, Ventilation and Air Condi-28

tioning (HVAC) systems, necessary technologies to guaran-29

tee acceptable Indoor Air Quality (IAQ) and thermal comfort30
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levels, come with high energy requirements. How to reduce 31

the energy use of HVAC systems, while satisfying occupants 32

comfort requirements, is a relevant research topic. 33

An effective controller for HVAC systems should incor- 34

porate time-dependent energy costs, bounds on the control 35

actions, targets on the IAQ and thermal conditions, as well 36

as account for system uncertainties, i.e., weather conditions 37

and occupancy. By doing so the buildings thermal storage 38

capacities can be effectively utilized. 39

A natural scheme that achieves the systematic integration 40

of all the aforementioned elements is the so-called Stochastic 41

Model Predictive Control (SMPC) [19]. Since the stochas- 42

tic laws ruling the occupancy and weather patterns are ge- 43

ographically and time varying, it is desirable that the con- 44

troller can learn the statistics of the random variables from 45

the experience. 46

Literature review 47

The literature on Model Predictive Control (MPC) for in- 48

door climate control is flourishing. Several studies show 49

that predictive controllers may significantly decrease energy 50

consumptions when endowed with real-time measurements, 51

weather conditions, and occupancy forecasts [7, 16, 24, 10, 52

9]. This is confirmed by experimental results on real build- 53

ings, where MPCs yield better energy use and comfort levels 54

performance than current practices [26, 12]. 55

There is nonetheless still room for improvements: these 56

controllers consider deterministic forecasts for the distur- 57

bances, and disregard information on the statistics on the 58

unavoidable forecasts errors. A common opinion is that ac- 59

tually this is an issue: as current standards explicitly state, 60

rooms temperatures should be kept within a comfort range 61

with a predefined probability [2]. Thus, building climate 62

control leads naturally to probabilistic constraints. 63

A stochastic version of MPC including probabilistic con- 64

straints can address this issue and explicitly account for sys- 65

tem uncertainties. Several SMPC schemes with probabilis- 66

tic constraints, generally called chance constraints, have al- 67

ready been proposed in literature [15, 17, 21, 18]. E.g., [18] 68

incorporates stochastic occupancy models within the con- 69

trol loop, while [15, 17] propose stochastic predictive build- 70

ing temperature regulators where weather and load distur- 71

bances are modeled as Gaussian processes. The resultant 72

nonlinear program is then solved with a tailored sequential 73

quadratic programming which exploits the sparsity of the 74



quadratic sub-problems. Also [21] integrates weather predic-1

tions into an SMPC. Here the control action is computed by2

solving a non-convex problem which exploits linearizations3

around nominal trajectories, and then by applying a distur-4

bance feedback. Remarkably, [21] uses deterministic pre-5

dictions of the internal gains; the only prediction for which6

uncertainties (assumed Gaussians) are accounted for is the7

weather one. Actually this is a common feature of all the8

SMPC schemes described in this paragraph: disturbances are9

Gaussians and additive processes. Further, generally the pro-10

posed SMPC controllers do not explicitly control the indoor11

air quality considering the uncertainty in the occupancy.12

At the best of our knowledge, only a few proposals depart13

from these Gaussian assumptions. One is our [22], where14

the controller exploits a scenario-based tractable approxima-15

tion of the chance constrained MPC problem, and where the16

scenarios are i.i.d. samples extracted from general probabil-17

ity distributions. The other one is [28], where the bilinear18

building model is iteratively linearized around nominal tra-19

jectories and where occupancy scenarios are sampled from20

a set of measurement data collected in eight single offices21

equipped with motion sensors.22

The numerical simulations performed in [28] suggest23

that scenarios-based techniques outperform other predictive24

methods and that the number of scenarios required to obtain25

reliable solutions can be prohibitive for the building case,26

while using a small number of scenarios fails in obtaining27

effective actuation levels.28

Statement of contributions29

Our aim is to develop effective control laws that do not re-30

quire demanding installation costs. The big vision is to pair31

advanced control schemes with learning technologies, and32

obtain easily deployable HVAC control schemes. Here we33

move along this direction, and propose a stochastic MPC for34

HVAC systems, which employs a learning module that con-35

tinuously and dynamically infers the statistics of the uncer-36

tainties from real data. The results from the learning mod-37

ule are incorporated in an MPC problem with probabilistic38

constraints on the indoor temperature and CO2 concentration39

levels.40

The control target is to minimize the energy use while41

satisfying both thermal comfort and air quality requirements.42

Randomized techniques are applied in order to find43

suboptimal solutions to the generally non-convex chance-44

constrained problem; in the rest of the paper we indicate this45

novel scheme with the acronym Randomized Model Predic-46

tive Control (RMPC).47

With respect to the existing literature we introduce some48

major novelties:49

• we show that appying a randomized technique to the50

chance constrained MPC for HVAC systems can im-51

prove the control of these systems;52

• we extend the statistics learning scheme by adding53

some parametric families as plausible distributions for54

the stochastic variables;55

• we present results of the implementation of the scheme56

on a real testbed located in Stockholm, Sweden.57

Organization of the manuscript 58

In Section 2 we presents the predictive controller and the 59

related system model. Section 3 outlines instead the learning 60

module that dynamically infers the statistics of the uncertain- 61

ties from actual data. Section 4 provides and discusses the 62

experimental results, and Section 5 eventually summarizes 63

our conclusions and proposes some future extensions. 64

2 Implementation of Randomized MPC for 65

HVAC systems 66

In this section we first describe the model of the system, 67

then we outline the structure of the MPC problem. 68

The inputs of the overall MPC scheme are, at every time 69

step, weather conditions, occupancy scenarios, and measure- 70

ments of the current state of the system. The output is in- 71

stead a heating, cooling and ventilation plan for the next N 72

hours, where N is the prediction horizon. Conforming with 73

the MPC paradigm, only the first step of this control plan is 74

applied to the HVAC system. After that, the whole procedure 75

is repeated. This introduces feedback into the system, since 76

the optimal control problem is a function of the current state 77

and of any disturbance acting on the building at the current 78

time step. More precisely, the outputs computed at each time 79

k are a mass air flow rate ṁventing(k), a ventilation system air 80

temperature Tsa(k), and a radiators mean radiant temperature 81

Tmr. 82

The independence of the air quality dynamics from the 83

thermal ones allow us to decouple the control of the temper- 84

ature and of the air quality in two separated subproblems: ( 85

i) the IAQ-RMPC, which aims at satisfying the required air 86

quality at a minimum energy use, and computes the optimal 87

sequence of the mass air flow rates over a given prediction 88

horizon; ( ii) the T-RMPC, which handles the indoor tem- 89

perature. By doing so, the computational tractability of the 90

overall control problem will be improved. 91

Since the air quality requirements have priority over the 92

thermal comfort, the solution computed by the IAQ-RMPC 93

lower bounds the air flow rate of the T-RMPC. 94

2.1 Modeling 95

Since the overall building energy usage is commonly 96

computed as the sum the energy usages of the single thermal 97

zones [10], here we focus on the control of a single thermal 98

zone (or room). As the structure of this subsection suggests, 99

we employ two different models: one for the thermal evo- 100

lution of the environment, and one for the dynamics of the 101

concentration of CO2. 102

Model for the thermal dynamics 103

We consider a thermal Resistive-Capacitive (RC) network 104

of first-order systems, where the nodes are the states repre- 105

senting the room, the walls, the floor and the ceiling temper- 106

atures. Each state is associated to a heat transfer differential 107

equation. We assume that we can control two different heat 108

flows: Qventing, representing the contribute due to the ven- 109

tilation system, and Qheating, representing the radiators. We 110

consider the outside temperature, the radiation, the internal 111

gains, the heat flows due to occupancy, equipments and light- 112

ings as disturbances. See [22] for additional details. 113



The control inputs are expressed as1

Qventing = ṁventingcpa
(
∆Th−∆Tc

)
= cpa(uh−uc), (1)2

Qheating = Aradhrad∆Th,rad = Aradhrad
(
Tmr−Troom

)
,(2)3

where ṁventing is the ventilation mass flow, cpa is the specific4

heat of the dry air, ∆Th =
(
Tsa−Troom

)
and ∆Tc =

(
Troom−5

Tsa
)

are respectively the temperature difference through the6

heating and cooling coils, Tsa is the temperature of the air7

supplied by the ventilation system, Arad is the emission area8

of the radiators, and hrad is the heat transfer coefficient of the9

radiators and Tmr is the mean radiant temperature of the ra-10

diators. Notice that cpauh(k) and cpauc(k) model the portion11

of the ventilation heat flow due to respectively heating and12

cooling.13

We model the room temperature dynamics with the14

discrete-time Linear Time Invariant (LTI) system15

xT(k+1) = ATxT(k)+BTuT(k)+ETwT(k)
yT(k) =CTxT(k),

(3)16

where xT(k) is the state vector containing the room temper-17

ature and the inner and outer temperatures of all the walls,18

uT(k) :=
(
uh(k),uc(k),∆Th,rad(k)

)
is the input vector, wT(k)19

is the vector of random disturbances containing the outside20

temperature, the solar radiation and the internal heat gain21

at time k, and the matrices AT,BT,ET,CT are of appropriate22

sizes. The output yT(k) is the room temperature at time k.23

Hence, the mass air flow rate and the supply air tempera-24

ture at each k are easily computed from the obtained values25

of either uh(k) or uc(k) considering both the requirements on26

the air quality and the comfort requirements on the supply27

air temperature.28

Model for the CO2 concentration dynamics29

The model is derived from a CO2 balance equation ac-30

counting for the fresh air from the ventilation system and31

the amount of CO2 generated per occupant. The state of the32

model is the nonnegative difference between the CO2 con-33

centration in the room and inlet air CO2 concentration (as-34

sumed equal to outdoor CO2 concentration), and is indicated35

with xCO2 = ∆CO2. We assume that we can control the mass36

air flow from the ventilation system, while the number of37

occupants is considered a disturbance.38

The resulting model is bilinear in the state and in the con-39

trol input. To simplify the problem formulation we then de-40

rive an equivalent linear model by replacing the bilinear term41

ṁventing · xCO2 with uCO2 and by adding the constraint42

ṁmin
venting · xCO2(k)≤ uCO2(k)≤ ṁmax

venting · xCO2(k) (4)43

on the new input uCO2(k). These constraints guarantee that44

the physical bounds on the control input in the original non-45

linear model are always satisfied. The original input, at each46

k and for xCO2(k)> 0, can eventually be obtained as47

ṁventing(k) =
uCO2(k)
xCO2(k)

.48

Then, the CO2 concentration dynamics can be described by49

the discrete time Linear Time Invariant (LTI) system 50

xCO2(k+1) = axCO2(k)+buCO2(k)+ ewCO2(k)
yCO2(k) = xCO2(k).

(5) 51

2.2 Randomized MPC 52

Here we describe the design of the two controllers, Tem- 53

perature (T)-RMPC and IAQ-RMPC, which use models (3) 54

and (5) respectively. 55

Since both models are LTI and both controllers need to 56

handle hard constraints on the inputs and probabilistic con- 57

straints on the outputs, we can uniform the notation and de- 58

velop both the controllers following similar steps. 59

We thus indicate both models simultaneously with 60

x(k+1) = Ax(k)+Bu(k)+Ew(k)
y(k) =Cx(k),

(6) 61

where x(k)∈R n, u(k)∈R m, w(k)∈R r and y(k)∈R p. The 62

model in (6) represents either (3) or (5), depending on the 63

controller under consideration (T-RMPC or IAQ-RMPC). 64

We notice that the bound on the room temperature are gen- 65

erally time-varying, since the comfort levels can be relaxed 66

during no-occupancy periods. 67

Let thus xt be the current state of system (6). The output 68

trajectories over the prediction horizon N can then be written 69

as 70

y(t + k|t) =CAkxt +
k−1

∑
i=0

CAk−i−1Bu(i)+
k−1

∑
i=0

CAk−i−1Ew(i).

(7) 71

Given (7), we can then express the output YYY t ∈ RpN over the 72

whole prediction horizon as a function of the initial state xt 73

as YYY t = CCC(AAAxt +BBBUUU t +EEEWWW t),where the matrices AAA, BBB, EEE 74

and CCC are built applying (7) recursively N times, UUU t ∈ RmN
75

are the control inputs, and WWW T ∈ RrN and the disturbances 76

over the prediction horizon. 77

Letting GGGx := [CCCAAA], GGGu := [CCCBBB], GGGw := [CCCEEE], g̃gg :=[
−ymin(k)T · · ·− ymin(k)Tymax(k)T · · ·ymax(k)T

]T, ggg := g̃gg −

GGGxxt , FFF :=
[
−III
III

]
, fff :=

[
−uT

min · · ·−uT
min uT

max · · ·uT
max
]T,

with 000 and III opportunely dimensioned zero and identity ma-
trices, the inputs and outputs constraints over the whole pre-
diction horizon N become

GGGuUUU t +GGGwWWW t ≤ ggg, FFFUUU t ≤ fff .

Problem 1 (Chance Constrained MPC for HVAC Control)
The MPC problem can be formulated as

min
UUU t

cccTUUU t∆k

s.t. P [GGGuUUU t +GGGwWWW t −ggg≤ 0]≥ 1−α, FFFUUU t ≤ fff

where 1−α is the desired probability level for constraint
satisfaction, ∆k is the sampling period, cccTUUU t is the energy
use vector over the whole prediction horizon, ccc ∈ RmN is
the cost vector, containing either only ones for the IAQ-
RMPC case, or the specific heat of the dry air cpa and the
product Aradhrad between the emission area and the heat
transfer coefficient of the radiators for the T-RMPC case.



Chance constrained problems like 1 are generally in-1

tractable unless the uncertainties follow specific distribu-2

tions, e.g., Gaussian or log-concave; in these cases, it is pos-3

sible to obtain equivalent convex –and thus computationally4

efficient– reformulations [14].5

However, as described later, Gaussian assumptions are6

rather restrictive. To overcome this limitation, but still obtain7

a solvable MPC problem, we propose to apply randomized8

approaches [3], that do not require the specification of par-9

ticular probability distributions for the uncertainties but only10

the capability of randomly extracting from them.11

The approach is as follows: let WWW t,1, . . . ,WWW t,M be a set12

of M i.i.d. disturbances samples (called scenarios), WWW t,i :=13 [
wT

i (t), . . . ,w
T
i (t +N−1)

]T, i = 1, . . .M. Then, the chance14

constraints in Problem 1 are replaced with the following set15

of deterministic constraints16

GGGuUUU t +GGGwWWW t,i−ggg≤ 000, i = 1, . . . ,M.17

Since the only constraint that is required to be satisfied is18

GGGuUUU t ≤ ggg− max
i=1,...M

GGGwWWW t,i,19

where the max applies element-wise to GGGwWWW t,i, most of the20

constraints in (8) are redundant.21

Letting d = mN be the number of decision variables, to22

choose the number of scenarios M to be generated one may23

exploit the sufficient condition24

M ≥ 2
α

(
ln
(

1
β

)
+d
)
, (8)25

that guarantees that solving constraints (8) will lead to a fea-26

sible solution for Problem 2 with a confidence level (1−β)∈27

(0,1) [3, 4] (with β an user-defined parameter).28

Further, to guarantee that the problem with sampled con-29

straints is always feasible, we soften the constraints in (8) by30

introducing the slack variables s(k) ∈ Rp at each time step31

k. The number of possible constraint violations can then be32

tuned by introducing a parameter that weights the slack vari-33

ables in the objective function. If the optimal solution can be34

obtained without violations of the softened constraints, the35

slack variables will be set to zero. The designer can thus con-36

siderably penalize constraint violations by assigning to the37

weighting factor a value that is orders of magnitude greater38

than the other coefficients parameters.39

Eventually we thus formulate the random convex problem40

embedded in the MPC scheme as41

Problem 2 (RMPC for HVAC Control)

min
UUU t

cccTUUU t∆k+ρ111Tsss

s.t. GGGuUUU t ≤ ggg+ sss−maxi=1,...M GGGwWWW t,i, FFFUUU t ≤ fff
(9)

where sss is the vector containing all the slack variables, ρ42

is the weight on the slack variables, and 111 is a matrix of ones43

with appropriate dimensions.44

Our experience indicates that (8) may be overly pes-45

simistic. E.g., we ran numerical simulations with α = 0.0546

and β = 0.001 and computed the empirical probability of47

constraint violation over 2400 different i.i.d. instances of the48

random convex problem (2). Applying condition (8), we set 49

M = 3157 and empirically reported a constraints violations 50

probability of 0.0044. Halving the indication given by (8) 51

(M = 1579) instead led to an empirical probability of con- 52

straint violations of 0.042, much closer to the confidence 53

level required initially. 54

Further, when compared to an ideal case endowed with 55

error-free forecasts, used as a theoretical benchmark, our 56

RMPC yields an almost neglectable amount of violations of 57

the thermal bound and an increase of only 2.5% in the energy 58

use. 59

3 Learning how to generate the scenarios 60

We now describe the approach used to learn the scenarios 61

generation rules used by the above RMPC strategy. We start 62

motivating the technological choice, then briefly introduce 63

the mathematical concepts and the theory used. 64

3.1 Motivations 65

To model the distributions of the disturbances a first ap- 66

proach is to apply apriori considerations, e.g., physics based, 67

that do not account for the actual measurements seen in the 68

field. An alternative paradigm is instead to learn from the 69

experience. If correctly implemented, the learning-based ap- 70

proaches give robustness and adaptability to different en- 71

vironments, necessary qualities if the technology wants to 72

reach the market. 73

But how to do this learning step? As reported in the 74

literature review, a classical approach is to pose Gaussian- 75

ity assumptions, and then exploit the data to estimate the 76

means and autocovariances. Unfortunately, Gaussianity in- 77

duces limitations in the kind of dependencies that can be cap- 78

tured. I.e., Gaussianity restricts the plausible dependencies 79

in the tails of the marginal distributions, see Figures 1 and 2 80

and their captions. 81

Figure 1. Samples from bidimensional Clayton (left) and
Gaussian (right) copulas with uniform marginal densi-
ties. The Clayton samples (x,y) show strong left-tail de-
pendency (x small induces y small) but weak right-tail de-
pendency (x big does not induce y big). Gaussian samples
instead have the same degree of dependency for both left-
and right-tails.

Another classical approach is to represent the forecast 82

quantities using Markov chains formalisms, but this requires 83

some form of discretization processes (e.g., temperatures 84

that may take values only on multiples of 0.5°C). Our opin- 85

ion is that it is preferable to do not treat random processes 86

like temperature or solar radiations as discrete quantities but 87

rather maintain their natural continuous nature. 88

We thus consider copulas, mathematical objects famous 89

specially in finance, hydrology, and wind forecasting, that 90



Figure 2. Effect of different left- and right-tail depen-
dencies in time series. The Clayton samples x(k) (left)
show small variability when their value is small, and big
variability when their value is big. The Gaussian sam-
ples (right) instead show an uniform variability over the
whole range of values.

naturally capture every kind of dependence, allow far more1

flexibility than Gaussian processes assumptions, can manage2

both continuous and discrete random processes, and come3

with robust, tested and reliable learning algorithms.4

The drawbacks are in the major computational require-5

ments needed to handle the generation of scenarios w.r.t.6

Gaussian cases; nonetheless the feeling is that this is not any-7

more a concern, given the technological advancements in the8

capabilities of modern processors. Moreover, although theo-9

retical foundations of copulas might seem complex, practical10

implementations and estimations are relatively straightfor-11

ward. For more complete treatments on the subject we send12

the interested reader to [13, 20, 27]. For some specialized lit-13

erature on copula methods for forecasting multivariate time14

series we suggest instead [23].15

3.2 Notation and basic definitions16

We use P [∗] to indicate the probability of the generic17

event ∗. Letting w(k) be a generic random variable of inter-18

est, we denote its Cumulative Distribution Function (CDF)19

with Fw(k)(ak) := P [w(k)≤ ak], and its quantile with20

F−1
w(k)(uk) := inf

ak

{
ak | Fw(k)(ak)≥ uk

}
. (10)21

We recall that F−1 is the inverse of F in the sense that22

if Fw(k)(ak) is absolutely continuous and strictly mono-23

tone then ak = F−1
w(k)

(
Fwk(ak)

)
for all ak. We moreover24

recall the so-called probability integral transform, that is25

that particular property ensuring every continuous random26

variable w(k) ∼ Fw(k)(ak) to be transformable into ωk =27

Fw(k)(w(k)) ∼ U [0,1], i.e., an uniform r.v. Letting www :=28

[w(1), . . . ,w(K)] be a generic random vector of interest, we29

denote its joint CDF with30

Fwww(a1, . . . ,aK) = P [w(1)≤ a1, . . . ,w(K)≤ aK ] . (11)31

Given (11), we call Fw(k)(ak) the marginal distribution of32

w(k).33

3.3 Copulas34

A copula is simply a function from the unitary hyper-35

cube to the unitary segment, i.e., C : [0,1]K 7→ [0,1], that sat-36

isfies three conditions: (i) C(1, . . . ,1,uk,1, . . . ,1) = uk for37

every k and uk ∈ [0,1]; (ii) if at least one uk is zero then38

C(u1, . . . ,uK) = 0; (iii) C is a K-increasing function. In 39

words, a copula is a K-dimensional joint CDF of a random 40

vector whose scalar components have all uniform marginals. 41

I.e., every copula is an opportune CDF 42

C(u1, . . . ,uK) = P [ω(1)≤ u1, . . . ,ω(K)≤ uK ] (12) 43

where ω(k) ∼ U [0,1], for each k. Thus every different C 44

can be considered a different way to impose dependencies 45

between a set of K random variables ω(k) that, when consid- 46

ered by themselves, are uniformly distributed in [0,1]. 47

The previous concept can be extended to handle generic 48

r.v.s: due to the probability integral transform, each ω(k) can 49

be considered the transformation of an other w(k), i.e., one 50

can think that ωk =Fw(k)(w(k)). This means that (12) can be 51

rewritten as follows: choose K generic continuous marginals 52

Fw(1)(·), . . . ,Fw(K)(·), and let 53

C(u1, . . . ,uK)=P
[
Fw(1)(w(1))≤ u1, . . . ,Fw(K)(w(K))≤ uK

]
.

(13) 54

Since Fw(k)(w(k))≤ uk is equivalent to w(k)≤ F−1
w(k)(uk), it 55

follows that 56

C(u1, . . . ,uK)=P
[
w(1)≤ F−1

w(1)(u1), . . . ,w(K)≤ F−1
w(K)(uK)

]
.

(14) 57

Let then ak = F
−1
w(k)(uk). This implies uk = Fw(k)(ak), and 58

thus 59

Fwww(a1, . . . ,aK) = P [w(1)≤ a1, . . . ,w(K)≤ aK ]

= C
(
Fw(1)(a1), . . . ,Fw(K)(aK)

)
.

(15) 60

Thus if the random variables are continuous 1 one 61

can always decompose the joint probability distribution 62

Fwww(·, . . . , ·) in two distinct terms: the set of marginals 63

Fw(1)(·), . . . ,Fw(K)(·), that describe the statistical behav- 64

ior of the random variables w(k) when considered inde- 65

pendently, and the copula C, that captures the statistical 66

dependency between the various w(k). To summarize in 67

words, copulas allow the researchers to specify separately 68

the marginal distributions and the dependence structure, 69

without losing any flexibility in the model, as instead Gaus- 70

sian processes do. 71

3.4 Learning copulas 72

Assume to have measured N K-dimensional vectors wwwn = 73

[wn(1), . . . ,wn(K)] from some past observations (e.g., exter- 74

nal temperatures for several days). One may thus use the N 75

samples www1, . . . ,wwwN to learn the joint CDF Fwww(a1, . . . ,aK), 76

and then use this estimated CDF to generate the scenarios 77

needed by the RMPC. As said before, our approach is to 78

learnFwww(a1, . . . ,aK) by exploiting the copula - marginals de- 79

composition. 80

The learning step can now be performed constructing 81

empirical copulas and marginals directly from the data, as 82

1Incidentally, we recall that Sklar’s representation theorem [25] ensures
that if the w(k)’s are continuous random variables then the C in (15) exists
unique. If the random variables are mixed then the uniqueness is not en-
sured anymore, while the existence is preserved. This means that removing
the continuity assumptions leads to complications when proving theoretical
results, but does not affect the effectivity of practical and empirical estima-
tion schemes.



in [22]. The empirical method nonetheless suffers whenever1

the wn(k) are not i.i.d. In this case it is preferable to let the2

various distributions (both marginals and the copula) belong3

to some parametric family, and explicit this dependence by4

writing the joint CDF for www = [w(1), . . . ,w(K)] as5

C
(
Fw(1)(a1 ; βββ1), . . . ,Fw(K)(aK ; βββK) ; θθθ

)
. (16)6

(16) specifies that the marginals Fw(k) and the copula C de-7

pend respectively on the parameters βββk and θθθ. For a through8

list of possibilities see, e.g., [20].9

Specifying probability distributions in parametric forms10

like (16) induces two questions, addressed in the next sub-11

sections:12

1. given one specific parametric family for the Fw(k)’s and13

one specific family for C, how should one estimate βββk14

and θθθ from the data?15

2. given various different parametric families for the16

Fw(k)’s and for C, how should one choose which is the17

best family from the data?18

3.4.1 Learning the parameters from the data19

Delegating to the specific literature for more detailed de-20

scriptions, we notice that this task is usually solved using21

Maximum Likelihood (ML) approaches. I.e., denoting the22

likelihood of the dataset of the measurements www1, . . . ,wwwN as23

a function of some unknown parameters24

L (www1, . . . ,wwwN ; βββ1, . . . ,βββK ,θθθ) (17)25

then one aims to find that particular vector of βββ
∗
1, . . . ,βββ

∗
K ,θθθ

∗
26

that maximizes L . We notice that, thanks to the separation27

between marginals and dependence introduced by the cop-28

ulas formalism, it is often numerically convenient to adopt29

inference functions for margins approaches [13], i.e., esti-30

mate the βββ
∗
k’s (the marginals) separately by maximizing the31

marginal likelihood32

N

∑
n=1

(
∂Fw(k)(ak ; βββk)

∂ak

∣∣∣∣
wn(k)

)
(18)33

with respect to βββk, then insert these βββ
∗
k in (17), and then even-34

tually find the best θθθ.35

We notice that these maximization steps are usually per-36

formed numerically by means of Newton or quasi-Newton37

methods, and that they can be performed online, i.e., incre-38

mentally as soon as new data arrive [11].39

3.4.2 Selecting the proper copula family40

Every particular choice for C induces a particular sta-
tistical dependency among the various w(k): since there is
no always-valid solution, each to-be-modeled quantity needs
tailored considerations. Sending back the interest reader
to [8, 5, 27, 1], we report that given a dataset www1, . . . ,wwwN
and two parametric copulas C1 (· ; θθθ1), C2 (· ; θθθ2) as plausi-
ble hypotheses, then an approach for deciding which one to
choose is to: (i) start computing an empirical copula Ĉ from
the data; (ii) compute the optimal (given the data) parame-
ters θθθ

∗
1, θθθ

∗
2 for respectively C1 and C2; (iii) choose between

C1 and C2 that C j, j = 1,2, that is closer to Ĉ in terms of an

opportune metric, e.g., the quadratic residuals
N

∑
n=1

(
Ĉ(wn(1), . . . ,wn(K))−C j

(
wn(1), . . . ,wn(K) ; θθθ

∗
j
))2

.

3.5 Extraction of samples from copulas 41

To extract a i.i.d. sample from a copula C corre- 42

sponds to extract a scenario for the considered process. 43

This can be done exploiting the general scheme: let- 44

ting Ck (u1, . . . ,uk) := C(u1, . . . ,uk,1, . . . ,1) denote the k- 45

dimensional margin for C and Ck (uk | u1, . . . ,uk−1) the cor- 46

responding conditional distribution, then 47

• extract Ω1 ∼U [0,1]; 48

• extract ν2 ∼U [0,1], and then compute that Ω2 that sat- 49

isfies ν2 = C2 (Ω2 ; Ω1); 50

• . . . 51

• extract νK ∼ U [0,1], and then compute that ΩK that 52

satisfies νK = CK (ΩK ; ΩT−1, . . . ,Ω1). 53

The equations νk = Ck (Ωk ; Ωk−1, . . . ,Ω1) are generally 54

solved with numerical root-finding procedures. But if C be- 55

longs to some particular parametric family (e.g., Gaussian, T, 56

Archimedean) then opportune closed forms lead to fast and 57

reliable extraction procedures [6, Chap. 6]. 58

4 Experimental Results 59

Description of the experimental setup 60

The testbed is located in the KTH Royal Institute of Tech- 61

nology campus in Stockholm. Its HVAC system is composed 62

by two parts, see also Figure 3: the ventilation system, sup- 63

plying fresh air, and the heating system, providing hot wa- 64

ter to the radiators. The first pre-conditions fresh air from 65

outside, canalizing it into a ventilation duct at a tempera- 66

ture of about 21°C. Part of this air is pushed directly into the 67

room, part may be heated/cooled by a chiller circuit. The ex- 68

haust air is ejected by an additional duct. The actuators are 69

dumpers for both the inflow / outflow ducts and the chiller 70

circuit valve. The heating system is composed by radiators; 71

the hot water flowing inside is regulated by means of a valve 72

and is provided by a central system. 73

Figure 3. Scheme of the HVAC system of the testbed.

Figures 4 and 5 validate models (3) and (5) against data 74

collected during the end of July 2013. We notice that the 75



models capture the main dynamics, even if with a general-1

ized smoothing effect. We believe that this error is induced2

by the map “damper opening percentage 7→ mass air flow3

ṁventing”, provided for the test, which was not sufficiently4

accurate.5
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Figure 4. Validation of the thermal using the measured
temperatures collected from the testbed.
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Figure 5. Validation of the CO2 concentration model
using the measured concentrations collected from the
testbed.

Definition of the performance indexes6

Out indexes are the total energy usage and the level of7

violations of the comfort bounds, calculated respectively as8

Etot = cpa

N−1

∑
k=0

ṁventing(k)
(
Tsa(k)−Troom(k)

)
∆k [kWh] ,9

Ch = ∑
k s.t. Troom(k)>TUB

(
Troom(k)−TUB

)
∆k [°C h] .10

TUB in the equations above is the upper bound temperature of11

the comfort level, while ∆k is the time between two samples.12

Summary of the results13

We compare two controllers: the current practice, a sim-14

ple control logic with distinct PI control loops and switching15

logic, indicated by the acronym “AHC” (from Akademiska16

Hus, the company managing the building of the testbed),17

and our RMPC scheme. The controllers are tested respec-18

tively on August 5 and 6, 2013, both from 9:00 to 14:00,19

under similar occupancy patterns and with equivalent exter-20

nal weather conditions (sunny Swedish summer days). The21

sampling time for the RMPC was 10 minutes, while the pre-22

dictions horizon for the weather, occupancy and solar radi-23

ance processes was 8 hours.24

The results shown in Figure 6 clearly indicate that our25

RMPC controller outperforms the current practice in terms26
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Figure 6. Comparison of the actuation levels computed
by the AHC and the RMPC controller. Numerically, for
the RMPC Etot = 1.275kWh while for the AHC Etot =
1.392kWh, approximatively 8.4% higher. At the same
time, for the RMPC Ch = 0, while for the AHC Ch =
0.2662 °C h.

of both energy use and violations of the thermal comfort 27

range (21−23 °C). 28

Namely, in Figure 6, it can be seen that the RMPC 29

controller does not yield violations of the thermal comfort 30

band, while the Proportional Integrative (PI) controller from 31

Akademiska Hus has violations of the upper bound on the 32

temperature . Moreover, the temperature variations are much 33

smaller with RMPC, which is a more favorable behavior in 34

terms of comfort. 35

The improvements can be explained by the control in- 36

put profiles depicted in Figure 6, where it is shown the pre- 37

cooling effect. The ventilation system was scheduled to op- 38

erate during the period with the lowest temperature (roughly 39

from 9:00 to 11:00) so that the variations of the temperature 40

profile of the inlet air, Tsa, are maintained as small as possible 41

and less cooling energy could be used in the next hours. 42

5 Conclusions 43

We proposed a Stochastic Model Predictive Control 44

(SMPC) controller for Heating, Ventilation and Air Condi- 45

tioning (HVAC) systems, aiming to diminish the energy re- 46

quired to maintain indoor thermal comfort and good air qual- 47

ity levels. The mechanism to account for the probabilistic 48

nature of the disturbances affecting the comfort indicators 49

is a scenario-based one: the controller starts by sampling 50

from the probability distributions of the disturbances, and 51

then constructs from those samples some constraints on the 52

evolution of the state of the system. 53

For robustness purposes, we endowed the algorithm with 54



a learning module that infers the statistics of the disturbances1

from the data. This choice follows the trend of developing2

general control schemes, that can be installed without high3

or time-consuming deployment phases. Again for the sake4

of generality, we choose not to exploit Gaussian assumptions5

for the statistics of the disturbances, and opted for using cop-6

ulas, a more computationally demanding but very flexible7

formalism that can handle every form of stochastic depen-8

dency among the various disturbances.9

The strategy has then been implemented and tested on10

a real office, showing simultaneously that: (i) the compu-11

tational burden of the SMPC plus the learning scheme can12

be managed by off-the-shelf devices; (ii) the actuation laws13

computed in this way are more effective than the current14

practice.15

The good results achieved in real experimentations moti-16

vate efforts to improve the method. Probably the most im-17

portant direction is towards the generalization of the control18

scheme to the case of whole buildings, which leads to in-19

creased complexity for both the models and the costs. An-20

other very important achievement is to extend the learning21

capabilities of the scheme to arrive to a fully self-tunable and22

adaptable controller.23

We eventually notice that there is still the need of measur-24

ing precisely and extensively the amount of energy savings /25

comfort maintaining performance of the strategy, to correctly26

evaluate, also monetarily, the degree of the improvements27

brought to the current practice.28
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analysis of model predictive control for an energy efficient building62

heating system. Applied Energy, 88(9):3079–3087, 2011.63

[13] H. Joe. Multivariate models and multivariate dependence concepts. 64

Chapman & Hall / CRC, 1997. 65

[14] P. Kall and J. Mayer. Stochastic Linear Programming: Models, The- 66

ory, and Computation. Springer-Verlag, 2005. 67

[15] Y. Ma and F. Borrelli. Fast stochastic predictive control for building 68

temperature regulation. In American Control Conference, pages 3075– 69

3080, June 2012. 70

[16] Y. Ma, F. Borrelli, B. Hencey, A. Packard, and S. Bortoff. Model pre- 71

dictive control of thermal energy storage in building cooling systems. 72

In 48th IEEE Conference on Decision and Control and 28th Chinese 73

Control Conference, 2009. 74

[17] Y. Ma, S. Vichik, and F. Borrelli. Fast stochastic MPC with optimal 75

risk allocation applied to building control systems. In Conference on 76

Decision and Control (CDC), pages 7559–7564, December 2012. 77

[18] A. E. D. Mady, G. Provan, C. Ryan, and K. Brown. Stochastic model 78

predictive controller for the integration of building use and tempera- 79

ture regulation. In Proceedings of the Twenty-Fifth AAAI Conference 80

on Artificial Intelligence, August 2011. 81

[19] M. Morari, J. Lee, and C. Garcia. Model Predictive Control. Prentice 82

Hall, 2001. 83

[20] R. B. Nelsen. An Introduction to Copulas. Springer, second edition, 84

2006. 85

[21] F. Oldewurtel, A. Parisio, C. Jones, D. Gyalistras, M. Gwerder, 86

V. Stauch, B. Lehmann, and M. Morari. Use of model predictive con- 87

trol and weather forecasts for energy efficient building climate control. 88

Energy and Buildings, (45):15–27, February 2012. 89

[22] A. Parisio, M. Molinari, D. Varagnolo, and K. Johansson. A 90

scenario-based predictive control approach to Building HVAC man- 91

agementsSystems. In IEEE Conference on Automation Science and 92

Engineering, August 2013. 93

[23] A. Patton. Copula methods for forecasting multivariate time series. In 94

Handbook of Economic Forecasting, volume 2, pages 1 – 77. Elsevier, 95

Oxford, second edition, May 2012. 96

[24] T. Salsbury, P. Mhaskar, and S. Qin. Predictive control methods to im- 97

prove energy efficiency and reduce demand in buildings. Computers 98

& Chemical Engineering, 51:77–85, August 2012. 99

[25] A. Sklar. Fonctions de répartition à n dimensions et leurs marges. Pub- 100

lications de l’Institut de Statistique de L’Université de Paris, 8:229 – 101

231, 1959. 102

[26] D. Sturzenegger, D. Gyalistras, M. Gwerder, C. Sagerschnig, 103

M. Morari, and R. S. Smith. Model Predictive Control of a Swiss 104

office building. In Clima-RHEVA World Congress, June 2013. 105

[27] P. K. Trivedi and D. M. Zimmer. Copula Modeling: An Introduction 106

for Practitioners. Foundations and Trends in Econometrics, 1(1):1 – 107

111, 2006. 108

[28] X. Zhang, G. Schildbach, D. Sturzenegger, and M. Morari. Scenario- 109

based MPC for energy-efficient building climate control under 110

weather and occupancy uncertainty. In European Control Conference, 111

July 2013. 112


