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Abstract: We consider the problem of letting a network of mobile agents distributedly track
and maintain a formation while using communication schemes that are asynchronous, broadcasts
based, and prone to packet losses.

To this purpose we revisit and modify an existing distributed optimization algorithm that
corresponds to a distributed version of the Newton Raphson (NR) algorithm. The proposed
scheme uses then robust asynchronous ratio consensus algorithms as building blocks, and
employs opportune definitions for the local cost functions to achieve the desired coordination
objective. In our algorithm, indeed, we code the position of the to-be-followed target as the
minimum of a shared global cost, and capture the desired inter-robots behaviors through
dedicated distances-based potential barriers.

We then check the effectiveness of the strategy using field tests, and verify that the scheme
achieves the desired goal of introducing robustness to changes in the agents positions due to
unexpected disturbances. More precisely, if an agent breaks the formation, then the update
mechanism embedded in our scheme make that agent move back to a meaningful position as

soon as some packets are successfully received by the misplaced agent.
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1. INTRODUCTION

In many fields and applications such as surveillance, dis-
tributed moving sensor networks, cooperative control of
mobile vehicles, smart transportation, and multi-vehicle
robotic, there is the need for letting a set of robots keep a
stable formation while simultaneously tracking a specified
trajectory in space. This situation arises specially when
this group of robots needs to perform a task that requires
the various agents to maintain specific relative positions
with respect to each other, but also follow a target that
is also moving in space (for example, a space debris that
shall be surrounded by a formation of chasing satellites).

Among the problems spanned by the situations mentioned
above, we focus on a framework where agents shall simul-
taneously maintain a formation that has been designed a
priori and whose center moves in time. In other words, we
consider thus the specific and simplified situation where
the to-be-followed formation is known and given, and
where agents can noisily measure how much the actual
currently reached formation differs from the ideal one.

In this paper we focus on finding how to distributedly
transform this locally and noisily measured “formation
error” into a strategy suggesting agents how to coop-
eratively move so to reach the desired ideal formation.
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We thus focus not on how to compute formations, but
rather on how to distributedly compute how to return to a
certain desired and a-priori known formation using collab-
oration schemes that are completely distributed, robust to
inter-robot communication losses, and using asynchronous
broadcast communication schemes.

Literature review A number of different works have been
focusing on multi-agent formation control using a variety
of approaches such as output feedback Zhou et al. (2016),
complex Laplacian Lin et al. (2014) Jagtap et al. (2015),
model independent coordination Egerstedt and Hu (2001)
and extremum seeking control Zhang and Ordonez (2011).

For example, output feedback methods for formation con-
trol have been proposed by Zhou et al. in Zhou et al. (2016)
to solve the formation control problem in multi-agent
systems with directed communication topologies. Here the
time-varying formation control problem is converted first
to a consensus problem and then to a stabilization prob-
lem, the sufficient conditions guaranteeing stability being
then achieved through opportune Lyapunov stability anal-
yses. Notice that in this case the target tracking problem
was not specifically addressed.

An other example of technique, based on complex Lapla-
cian frameworks, was developed by Lin et al. in Lin et al.
(2014). Here authors address the problem of designing
a distributed and stable formation control strategy first
determining theoretical results for formation shapes that
are specified by inter-agent relative positions. The authors



show then that all the formations that are subject to only
shape constraints are those that lie in the null space of
a complex Laplacian satisfying certain rank condition and
that a formation shape can be realized almost surely if and
only if the graph modeling the inter-agent specification
of the formation shape is 2-rooted, and then providing a
distributed and linear control law based on knowing the
shape target formation a priori. In the same branch of
techniques, Jagtap et al. (2015) designed a multi-agent mo-
tion synchronization scheme integrating output regulation
techniques with the aforementioned complex Laplacian
and opportune consensus algorithms. Notice that also here
the tracking issue was not specifically addressed.

An other distributed formation control strategy, called
model independent coordination, was developed by Egerst-
edt and Hu in Egerstedt and Hu (2001); here authors
combined a desired reference path for a virtual leader
with the formation control problem described above. The
tracking problem was then specifically resolved for a group
of nonholonomic robots — even if no navigation strategy
was proposed therein. In this work, moreover, the relative
distance and orientation of the agents was exponentially
stabilized by feedback controllers working in a leader-
follower setup and using local information from local sen-
SOrs.

Lastly, we mention that extremum seeking techniques
have also been used for the formation control problem,
in particular in combination with approaches based on
potential functions Olfati-Saber and Murray (2002). This
approach includes creating potential functions that embed
information about the scalar signal to be tracked (i.e., the
moving target) and information about the interconnectiv-
ity among agents. Formation control and target tracking
are then realized by minimizing this potential function;
extremum seeking control strategies can then be used to
autonomously find how the closed-loop system for main-
taining the formation shall operate, while simultaneously
maintaining stability and boundedness of the actuation
signals Zhang and Ordofez (2011).

Statement of contributions All the methods above re-
quire the agents to share information through opportune
wireless communications. Often, to ensure the stability of
the formation and tracking control algorithms, scholars
require agents to implement synchronized communication
schemes. Relaxing the need for synchronization, though,
would simplify the implementability of these schemes in
practical applications.

In this paper we analyse how the formation and tracking
control problems can be solved in contexts where agents
shall implement broadcast and lossy asynchronous commu-
nication schemes, and in which each agent has a limited
amount of information about the status of the other nodes
in the network.

More specifically, we cast the formation and tracking con-
trol problem so that it is amenable to be distributedly
solvable using an opportunely modified version of the
Newton Raphson Consensus (NRC) algorithm, a primal-
based distributed numerical optimization scheme specif-
ically designed for multi-agents convex optimization in

situations where it is not possible to guarantee neither
synchronicity nor losslessness in the information exchange
schemes. The strategy will thus work by minimizing the
cost above cooperatively and iteratively. By finding the
minimum of this given function, the agents will indeed find
how to move in space and converge towards the desired
formation.

The paper briefly describes: ¢) how to design functions
leading to particular formations, #) how to implement
robust asynchronous NRC algorithms, and 4ii) how to
guarantee achieving formation control under the assump-
tion of noise in the measurements of the relative distances
among the nodes.

Structure of the manuscript Section 2 introduces the no-
tation used in our distributed optimization scheme. Sec-
tion 3 describes how to cast the formation and track-
ing problem using opportunely designed cost functions.
Section 4 describes the NRC scheme and defines how to
modify this algorithm so that it can serve as a forma-
tion and tracking control scheme. Section 5 shows results
collected from field trials involving robots equipped with
bluetooth communication modules. Section 6 concludes
the manuscript with the learned lessons and some potential
future research directions.

2. NOTATION

The algorithm works by letting each agent maintain in its
memory an estimate of the positions of all the various other
agents in the network. Considering thus agent i, we collect
the set of estimates of i be the column vector Z?, in the
sense that the estimate that node 7 has of the position
of node j is the j-th component of !, indicated with
z%. Note that each component T’ is actually a column
vector that may have dimension two or three (two for
terrestrial robots, three for aerial ones. Hereafter we will
consider for simplicity a dimension two, generalizations
being immediate). Stacking all the local state vectors
z', ..., N we then obtain the vector of all the various
estimated positions within the network, that we indicate
with Z. This vector will later on be extensively used within
the NRC-based formation control scheme.

The previous set of states 7 indicates estimated positions;
in contrast to these quantities there is then the set of
actual positions of the nodes within the used reference
system. These states (either two or three dimensional,
again depending on the application) will be indicated with
the column vector x, whose components are the column
vectors zt,. ..,z

As for the communication graph, we assume that the
nodes communicate via a directed communication graph
represented as G = (V,€) with nodes V = {1,..., N} and
edges £ CV x V so that (i,7) € & represents the fact that
node j can directly receive information from node i. We let
moreover N2 be the set of out-neighbors of node i, i.e.,
let NPUt = {j € V| (i,j) € £,i# j} be the set of nodes
receiving messages from 4. Similarly, we let Ni* be the set
of in-neighbors of i, i.e., N\ = {j € V| (j,i) € £ i # j}.
Finally, we also let their cardinality be indicated by |N"]
and |NV!®| respectively. As a standing assumption, the



communication graphs considered in this manuscript are
always strongly connected.

3. DEFINING FORMATIONS THROUGH COST
FUNCTIONS

We now cast the problem of designing a formation for a
set of agents as a problem of designing an opportune cost
function. We consider then the following two requirements:

(1) were them let alone, all the various agents would indi-
vidually converge towards a point that represents the
target that these agents should track. Importantly,
the position of the target can potentially be time-
varying;

(2) when in the presence of other agents, the various
nodes shall maintain a certain sparsity pattern (or
formation) around the target point defined above.

Designing particular formations with complex function
design can then be performed as we exemplify hereafter:
assume for instance that the network is composed by six
agents, and that we may want them to follow an hexagonal
formation where the target position is in the centre of the
hexagon, as in Figure 1 below.
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Fig. 1. An example of a plausible hexagonal formation
for six agents, for which the target position is in
the centre of the hexagon (on the left) and of the
corresponding cost ® as defined in (2).

The intuition is that the desired formation structure can
then be seen as a cost function that has several local
minima around the target and placed where we would
like the agents to be (so that the number of local minima
corresponds to the number of agents in the formation).
Assume then to be able to phrase this “centralized” cost
into a sum of opportune local costs. Intuitively speaking,
this enables (as we will see in the forthcoming sections)
casting the problem of maintaining a formation and track-
ing a target point into the problem of implementing an
opportune distributed numerical minimization procedure.

Instrumental for the consequent derivations, we complete
the notation listed in Section 2 by introducing:

e the quantity Zfo,m, & column vector collecting the
global coordinates of the N minima defining the
formation. As an example, the vector Zfym, for the
case of Figure 1 is a column vector stacking the
coordinates of the various points Aj,..., Ag in the
global reference system;

e the quantity xs¢, indicating the position of the target
defined above in the reference system used by the

agents (and thus again an either two-dimensional or
three-dimensional vector). In practice it practically
always holds that @ = % Z;\Ll x},,,, where z}
refers to that part of zfy that correspond to the j-
th minimum in the formation, so formally introducing
Ztgt would not be needed. However, this notation is
handy for our future derivations.

To express the centralized cost as a sum of local costs we
then propose to consider the generic functional structure

fi = (I) (%§7xtgt7xform) + /VZ \Ij (@\27@;) (1)
i#]
with ¢ = 1,..., N, and where:

e & will serve the purpose of inducing agent i to
move towards a location that is compatible with the
position of the target xs and the positions of the
various local minima Zgomm;

e U will serve the purpose of capturing desired inter-
robot behaviors, in the sense of inducing agents to
respect certain distances by acting as a potential
barrier;

e v will serve as a regularization parameter trading off
the importance of the “global” behavior induced by
® against the “local” behavior induced by V.

Before proposing an example of how f; may look like in
practice, we note that the total cost in (1) depends only
on the estimated states 7! and 35; (i.e., on where i believes
to be and on where i believes j to be), and the (assumed
to be known) positions xtgt and zgorm (i.e., the positions
of the target and of the minima of the formation). What
the optimization algorithm will then do later when we
will introduce it is to find for each node ¢ the “best”
geographical position as the argument minimizing f;.

The following is then an example of potential f; that
we used in our field experiments. Note that, for obvious
reasons, we do not claim that this specific cost is optimal
to respect to any norm — we however experienced that,
from experimental perspectives, it gave us good results in
terms of making agents reach the desired formation while
keeping safe distances among each other. As for ®, our
choice is thus
)

N
b = Hl'tgt — §§H2+thgt - §;||2_Z exp (— Hx?orm — fz
j=1

(2)
where xﬁorm refers to that part of ¢, that correspond to
the j-th minimum in the formation (cf. Figure 1). Graph-
ically speaking, defining ® through (2) while considering
the planar hexagonal formation in Figure 1 leads to a cost
that is qualitatively as in the right panel of Figure 1.

Inspecting Figure 1 we notice that the centre of the
formation (i.e., the target position zi4,) corresponds to

a peak induced by the term ||z —z§||_2. Even if it
would seem, from purely mathematical perspectives, that
this term is actually useless, we empirically found that
its presence helps significantly the agents reaching the
formation in a faster and smoother way.

The term thgt — xéH2, instead, pushes agents to get closer
to the center of the formation, and plays a relevant role



specially when some agent somehow “falls behind”. The
last term corresponds to a sum of functions that have the
role of creating a series of local minima where appropriate.

Importantly, the cost ® does not contain elements that
prevent different agents to come “too close”, i.e., it does
not contain mechanisms avoiding the possibility that more
than one agent tries to occupy one specific minimum. To
this aim it helps introducing the function ¥, that adds
opportune potential barriers so that no more than one
node will be orbiting in the neighborhood of one minimum.
In our field experiments we found that the inverse of the
Euclidean distance between the (estimated) positions of
the nodes, i.e.,

leads to desirable practical behaviors.

As a concluding comment about the here introduced costs,
we note that in this way one designs only the shape
of the formation, and do not assign to each agents a
particular position within the formation. This implies that
the position that an agent will occupy in the formation will
be determined by its initial position with respect to the
other agents. If one would instead prefer to assign to each
agent a specified position then it is immediate to extend
the framework by adding costs that reflect this choice by
opportunely modifying ®. Since this modification would
not add too much to the messages that we want to convey,
but at the same time it would add complexity that would
obfuscate our discussions, we will simply ignore it.

4. DISTRIBUTED FORMATION CONTROL
THROUGH THE NEWTON RAPHSON CONSENSUS

In this section we introduce the building block of our
formation control algorithm, namely the NRC algorithm
introduced in Carli et al. (2015); Bof et al. (view). The
algorithm works by considering that a network of N col-
laborative agents aim at solving the separable optimization
problem

z€R™

x* = arg min Zf’(x) (3)

with the costs f*: R" — R known only locally by agent
and strongly convex. The NRC algorithm is then based
on the observation that the standard Newton-Raphson
update in the standard centralized scenario with a single
agent can be written as

v = e (V) Vi) (4)
= (1-g)a+e(V2f(@) " (V2 (0)e - V(@)
with the superscript + indicating an updated value. Let-

ting
h'(z) =

so that

g'(x) = V2 fi(2x)z = Vfi(z) (5)

N

Zv?fz

v fi(e)
th (6)

N
V2 f(a)r = Vi)=Y (V2fi(x
=1

we get the intuitive strategy of distributing (4) by letting
the agents have different values of z* and run in parallel
the N local updates

—1 N
T =1-¢)x +E<Zm ) (Zgi(xi)) (8)

Two intuitions are then crucial to understand how (8) can
work as a distributed version of (4):

(1) assume to be able to compute, through opportunely
fast average consensus protocols, the quantities

1L 1
:N;h(w :N;g(fc) 9)

every time an z' is updated. Then we could run (8)
as 27 = (1—e)a’ + e(2) " (y) and expect that,
since the dynamics of the N local systems would be
identical and driven by the same forcing term, ' —z;
would tend to zero as soon as the dynamics are stable;
(2) once ' — z; ~ 0 for each i and j then the dynamics
of each local system are practically equivalent to a
standard centralized Newton-Raphson algorithm.

The previous intuition requires computing the two average
consensus (9) and the local dynamics to be asymptotically
stable. As shown in Varagnolo et al. (2016), local stabil-
ity for the overall algorithm can be guaranteed assuming
strong but bounded convexity of the local functions f?, in
the sense that it is guaranteed that there exists e* > 0 and
a neighborhood 2 of the global optimum so that for ¢ < ¢*
and initial conditions in 2 the algorithm is guaranteed
to exponentially converge to the optimum. Importantly,
the original NRC optimization algorithm has moreover
been extended in Bof et al. (view) so to cope with com-
munications that are broadcast, asynchronous, and prone
to packet losses. The strategy is based on substituting
standard average consensus algorithms with the robust
asynchronous ratio consensus algorithms introduced in Bof
et al. (2017).

Here we start from the algorithm proposed in Bof et al.
(view), and extend it so that it can serve our purpose
distributed formation control need. More precisely, we
adapt it so that it can incorporate online information on
the position of the nodes and account for situations where
for some reasons a robot is not in the position where it is
estimated to be (e.g., situations where agents are exposed
to environmental forces that affect their position as wind
or sea currents).

We thus address this by introducing this mechanism:
assume that, after moving, the generic node ¢ can measure
its position in the global reference system, i.e., measure
x* . This newly obtained information can then be used
to overwrite that element in the local set of estimates z°
that corresponds to the own estimated position, i.e., ¢ can
perform the operation Ez « 2t

Summarizing, our distributed formation control algorithm
works by updating the following variables:

e 7 and 2, that are used to continuously keep track of
the averages 5 ZZ L hi(z?) and + ZZ 194 (x");



e 0, oL, pif7 and pi*7, that help coping with broad-
cast asynchronous and packet-loss prone communica-

tions.

Algorithm 1 ra-NRC with feedback

Initialization step (for every node)
2’ + estimated initial position

Vo0 g0 god

21, R 1, hioMe ]

0,0, 0.0

péfj +—0, piTI+0 V in-neighbor j

When node i broadcasts a packet
a) prepare the data
Lyt Wiﬂ
) 1 )
ZZl < Wz’l
a; — O’; + yf
oy 0, + 2"
b) transmit the data
5: broadcast i,0,, 0,

oW D

¢) update the local estimates
T (1—e)2t+¢ (zi)_l Y
gi,old — gz

hi,old P hi

WV rE

10: g' « W'z = V('

1y Yy +g — glj"l

12: 2% ¢ 2% + hi — piold

When node j receives a packet from node ¢
a) receive the data
13: yj — y] + J; — pg!“f
14: 20 20 + ol — plF
N '
15: p@{_z — o;
16: pl" 0ol
b) update the local estimates
17: 20 (1 — )2/ + ¢ (7;7')71 Y
18: ghold « g
19: hiold « pi
20: bl « V2fi(z7)
21: ¢/« W2l -V fI(27)
22: Yl gl + g7 — gPoM
23: 29 < 20 + hI — pieold
¢) move, if the total number of received packets is a
multiple of K ‘
24: move towards the just computed f;
25: measure the novel position 7w
26: T+ aimew
27: re-update the local estimates as in b) above

In our algorithm, U; (respectively o) plays the role of
a mass counter keeping track of the total information
transmitted by node ¢ about the variable y* (2*). Instead

pi7 (pL7) keeps track of the total information received

by node i from node j concerning the variable 37 (27).
These mass counters have been introduced first in Vaidya
et al. (2011) to robustify the standard average ratio

consensus algorithm so to cope with the presence of packet
losses. Intuitively, indeed, if a packet related to y? is lost
by node i, its value can be retrieved by computing the
difference o, — p; 7 once the next packet o;, is received
by node i.

Note then that, even if the vector Z¢ contains an estimate
of the positions of all the various nodes, to decide where to
move node 7 is interested only into its i-th component of 2%,
i.e, 7i. However, if communications among agents happen
at high frequency, we noticed that it is convenient, from
a practical point of view, that ¢ moves to the new desired
position Z¢ not every time this quantity is updated, but
only after K updates have been performed, where K is a
positive integer that is likely dependent on the application.
This part of the algorithm accounts also, as one can see
from the pseudo-code, for potential external disturbances.
In this case, indeed, the algorithm is so that when the node
moves in space then its own estimate Z¢ is re-initialized to
the measured position.

5. FIELD EXPERIMENTS

We now illustrate the effectiveness of our scheme via a
field experiments. More precisely, to verify the practical
usefulness of our algorithm we performed field experiments
using three arduino-based wheeled robots from minseg.
com that shall follow an equilateral triangle formation.
using broadcast bluetooth communications, The actual
positions of the robots were measured using a Vicon
motion-capture system, and the measured positions were
individually communicated to the various robots using a
dedicated bluetooth communication module. Agents were
communicating among themselves also using broadcast
bluetooth communications. Also in this case the to-be-
followed trajectory was composed by two parts: a first one
where the target remains fixed, and a second one where
the target follows a sinusoidal movement.

L5
],
051

oF

Y[m]

2 1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
X[m]

Fig. 2. Trajectories of the robots during our field experi-
ment.

The results of the test are reported in Figure 2. In the first
phase the target does not move, so that robots move only
to reach the formation. In the second phase, instead, the
target starts to move and the agents move to follow it while
maintaining the formation. Note then that in this case



there exists an external disturbance (more precisely, us)
that was been applied to the red agent: indeed that robot
was manually moved far away from its current position just
after the target started to move. As the figure suggests,
the agent quickly came back to the desired position in the
indicated formation.

To complement the previous results we report in Fig-
ure 3 an analysis that quantifies the number of packets
that were lost during the experiment. Despite experi-
encing more packet losses than we expected, the algo-
rithm was able to cope with the task that it was as-
signed to it. As a concluding note, all the code used for
our experiments is available on github.com/damianovar/
formation-control-via-NRC.

PACKET LOSSESANALYSIS:
Packets sent by bot 1 = 45

Packets received by bot 2 =29 losses = 36%
Packets received by bot 3=32 losses = 29%

Packets sent by bot 2 = 44

Packets received by bot 1 =36 losses = 18%
Packets received by bot 3=32 losses = 27%

Packets sent by bot 3 =45

Packets received by bot 1 =32 losses = 29%
Packets received by bot 2 =33 losses = 27%

Fig. 3. Analysis of the frequencies of packet losses events
during our field experiment.

6. CONCLUSIONS AND FUTURE WORKS

We proposed a new approach to distributedly solve the
problem of tracking and maintaining a formation in an
asynchronous and lossy communication scenario. To this
purpose we employed a robustified Newton Raphson Con-
sensus (NRC) algorithm, and checked using both numer-
ical and tests that the scheme achieves the desired goals.
More precisely, the algorithm introduces robustness to
changes in the agents positions due to unexpected dis-
turbances, so that if an agent breaks the formation, then
the position estimates update mechanism embedded in
our scheme makes that agent move back to a meaningful
position.

This implies that the network of agents collectively re-
sponds to target motions by behaving in a coordinated
fashion to the point that the target following motion qual-
itatively appears as a rigid translation of the whole flock
(with a degree of rigidness that inversely depends — even
if we did not show it in our experimental results section
— on the probability that the packets sent by the various
agents are getting lost).

Despite working from practical perspectives, the algorithm
requires some future analysis and development efforts.
For example, the stability of the original NRC (that has

already been proved to hold under mild conditions) should
now be revisited for this new practical situation in light
of the additional mechanisms that we incorporated in our
novel scheme.

An other interesting problem with both practical and
theoretical sides spans from the possibilities of performing
an on-line tuning of the stepsize ¢, since this would likely
improve the convergence speed of the scheme. However,
letting stepsizes change and being able to prove conver-
gence properties seems to be a mnotoriously non-trivial
problem in the distributed optimization literature.
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