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Abstract: This paper proposes individualized, dynamical and data-driven models that describe
pelvic floor muscle responses in women that use vaginal dilation. Specifically, the models describe
how the volume of an inflatable balloon inserted at the vaginal introitus dynamically affects
the aggregated pressure exerted by the pelvic floor muscles of the person. The paper inspects
the approximation capabilities of different model structures, such as Hammerstein-Wiener and
NARX, for this specific application, and finds the specific model structures and orders that best
describe the recorded measurement data. Hence, although the current dataset is drawn from a
sample of healthy volunteers, this paper is an initial step towards better understanding women’s
responses to vaginal dilation and facilitating individualised medical vaginal dilation treatment.
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1. INTRODUCTION

It is estimated that 30-40% of women suffer from Genital
pain / penetration disorders (GPPD), e.g., painful expe-
riences during sexual intercourses, at least once in their
life (Goldstein et al., 2009, Chap. 2). The problem can
be caused by a variety or combination of physiological
processes (e.g., complications after cervix cancer surgeries,
vaginal radiotherapies, Mayer-Rokitansky-Kiister-Hauser
syndromes, male-to-female gender confirmation surgeries)
and psychosocial processes (e.g., traumatic sexual experi-
ences) (Goldstein et al., 2009, Chap. 3). It is assumed that
psychological mechanisms (e.g., anxiety, catastrophising
pain and avoidance of sexual intimacy) and interpersonal
factors (e.g., hostile partner responses, relationship con-
flict) may maintain, prolong and exacerbate the suffering.

Treatments of GPPD combines psychological and physio-
logical treatments. The latter often include stretching the
vaginal duct, desensitizing the vestibulum, and relaxing
the pelvic floor muscles (Binik et al., 2006; Bergeron et al.,
2008; Goldstein et al., 2011) through vaginal dilators.
However, since these therapies are perceived as invasive,
lengthy and uncomfortable, several patients delay, avoid
or stop treatment, which might be improved by individ-
ualising the vaginal dilation patterns. To the best of our
knowledge it is nonetheless still unclear how to quantita-
tively perform this individualisation step. Thus, control-
oriented models are needed for design purposes.

The medical literature, comprises studies that analyse
some implications with medical-oriented approaches. For
instance, it is known that sexual arousal in women initiates
genital blood flow, and that this leads to vasocongestion

of the vestibular bulbs, Puppo (2013), and vaginal lubri-
cation, Levin (2002); Boyer (2009). Further, it is known
that inducing vibrations in a “suitable range” of the inner
labia and the vestibular bulbs can facilitate and intensify
orgasms, Puppo (2011). Also, both touch and pain per-
ception thresholds increase with the physiological arousal
levels once the patient is stimulated with vibrations, while
for the thermal stimulation case the touch and pain per-
ception thresholds do not seem to be greatly influenced
by physiological arousal levels, Gruenwald et al. (2007).
On the other hand, experiencing fear induces activity
of the pelvic floor muscle, van der Velde et al. (2001);
Both et al. (2012). Tense pelvic floor muscles before or
at the beginning of the penetrative act may then lead
to decreased blood flow and lubrication, Van Lunsen and
Ramakers (2002); Binik et al. (2006). Hence, penetrative
activities with no or little arousal or initial activity of the
pelvic floor muscles due, e.g., to fear may cause vulvar
pain, Brauer et al. (2006); Farmer and Meston (2007); ter
Kuile et al. (2010). When it comes to understanding the
behaviour of the pelvic floor muscles, several models exist
as summarised in Li et al. (2010). However, they mainly
focus on childbirth and do not describe women suffering
from female GPPD.

The models presented above do not focus on connecting
causes with effects for all variables involved in experienc-
ing genital pain, or on describing the dynamics of these
variables. To the best of our knowledge the unique model
that describes the interplay of several key variables as a
dynamic model (in contrast to static cause-effect relation-
ships as described above) is derived in Varagnolo et al.
(2017). Here the variables form two distinct loops, called



the Circle Of Fear (COF) and Circle Of Pleasure (COP).
The COF captures the facts that: ¢) pelvic muscle activity
before or at the beginning of penetration may lead to
pain; %) fear induces muscular tension; and #%) inducing
positive erotic stimuli may reduce fear. The COP relies
on the Basson model of the female sexual response, Bas-
son (2000), and models that i) the physiological arousal
increases if the patient is sexually stimulated and subjec-
tively aroused; i) the subjective arousal increases with
sexually stimulation and pleasurable physical sensations;
and 74) physiological arousal affects the subjective arousal
indirectly via the intermediate state variable of physical
pleasure. The model in Varagnolo et al. (2017), though,
is solely based on known cause-effect relationships in the
medical literature, informed guesses from experts in the
field, and the objective to find a suitable deterministic
mathematical model that strikes a balance between being
able to accurately model some known relationships and
being simple enough to be mathematically analysable.
However, the model in Varagnolo et al. (2017) is neither
directly based on specific medical tests nor measurement
data, and is hence not validated.

Here, we do the first step towards closing this gap by
deriving data-driven dynamical models of female response
to vaginal dilation using time-series of pelvic floor pressure
collected from healthy patients during ad-hoc medical
trials. We investigate which type of model and model
order are suitable to accurately describe the recorded
data. Importantly, given our vision of providing tools for
designing personalised vaginal dilation patterns, we fo-
cus specifically on models with control-oriented structures
such as Hammerstein-Wiener and Nonlinear autoregres-
sive exogenous (NARX) models, which have been shown
to be suitable in other biomedical applications, see Bro
and Medvedev (2017); Langdon et al. (2016).

The paper is organised as follows: Section 2 describes the
experimental setup used to record the measurement data.
Section 3 overviews the standard strategies of modelling
generic muscular activity. Section 4 presents our identifi-
cation results. Section 5 closes the paper by drawing some
qualitative and quantitative conclusions.

2. MEDICAL TRIALS SETUP

To derive quantitative dynamical models of how the pelvic
floor muscles respond to forced vaginal dilation we use the
dataset recorded at Maastricht University Hospital and
described in more detail in Melles et al. (2018). The data
comprises participants’ responses to the gradual vaginal
dilation forced by a Vaginal Pressure Inducer (VPI), an
inflatable balloon to be inserted at the introitus as de-
scribed in Figure 1, while watching sequences of 5-minutes
long erotic or non-erotic movies in the (tentatively) neutral
environment shown in Figure 2.

The study included 42 women without sexual problems,
aged between 18 and 45 years, in a steady heterosexual
relationship for at least 3 months, and being sexually
active including coitus. Each individual participated in
single sessions where, while using the VPI and watching
movies sequences, they recorded their perceived level of
comfort (on a scale from 0 to 100) with an opportune
slider. As soon as the pressure felt unpleasant, participants

Fig. 1. Picture of the VPI (left) and schematic description
of its usage (right). The balloon can be gradually
filled with water at body temperature by a pump; the
length of the inflated area is up to 6 cm. When the
balloon is filled, an outward omnidirectional pressure
is given to the surrounding tissues.

Fig. 2. Photos of the room hosting the medical trials.

could end the experiment and force the deflation of the
balloon. The sessions started with the presentation of
a neutral acclimatisation movie with pressure induction
using the VPI. This was followed by showing one high-
arousal sexual movie without inducing vaginal pressure,
then followed by four randomised movies with inducing
pressure (one high-arousal and sexual, one low-arousal and
sexual, one high-arousal and nonsexual, and one neutral
movie). A typical data set is shown in Figure 3.

3. MODELLING OF THE PHYSIOLOGICAL
RESPONSE TO VAGINAL DILATION

We are interested in modelling the muscular pressure
exerted by the body based on measurement data recorded
in the test described in Section 2. We model the aggregated
muscular pressure exerted by the pelvic floor muscles as
the output of the system, while as inputs we consider the
volume of the VPI and the perceived pleasure levels.

Notice that our modelling problem is reminiscent of the
one of tying muscular stimulation levels with the corre-
sponding pressure (or force) outputs, a general problem for
which researchers developed many different generic mod-
els of different complexities. These include physiologically
based models (that relate stimuli and corresponding forces
as interactions of the fibers at a microscopic level, Huxley
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Fig. 3. Dataset from one patient. The six movie clips

described above are in this case started at minutes
3, 13, 26, 35, 43 and 52. The VPI was inserted in the
duct during the whole trial but inflated only while
watching the movies (but the second one).

(1957)), Hill-type models (that relate stimulation levels
and corresponding forces through mechanically-inspired
concepts, Hill (1977)), and black-box models (that relate
input-output relations starting from numerical evidence).
In this work we are interested in the last type of models
because in contrast to the standard literature on muscle
models, we are not provided with

(1) measurements of the muscular stimulation signals or
other signals that are known to correlate with them
(e.g., Electromyography (EMG) levels);

(2) measurements of the force or pressure exerted by a
specific set of muscular fibers;

(3) measurements of the mechanical parameters of the
muscular fibers (such as thickness and length).

In other words, since the available data is not compatible
with standard physiologically-based or Hill-type models;
we thus follow a purely data-driven approach.

Literature on black-box methods for modelling muscular
dynamics can be divided in terms of which estimation tool
is used for learning from the datasets. The most common
strategies in this case use Hammerstein- Wiener or NARX
models, including Neural network (NN) and fuzzy models.
Physiological models of muscular dynamics are indeed
typically non-linear, so that non-linear identification ap-
proaches tend to provide better results than linear ones.

Hammerstein models, that can be described as in Figure 4,
comprise a static nonlinear map (a.k.a. the static recruit-
ment in the specialised literature), an Autoregressive ex-
ogenous (ARX) model, and an additive disturbance that
may account for temporary effects like fatigue and that can
be modelled through another additional transfer function.

NARX models can be described in the general form
y(t) = f (y(t=1),. . y(=T), u(t=1), ..., u(t=T),0) +d(t)

where y is the output, u the input, and d disturbances
of the system. Notice that there exists a vast literature
on how to determine both the structure of f(-) and the
best set of parameters . It is nonetheless known that the
problem of selecting the structure of f is a difficult task
specially when the size of the available dataset is small.
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Fig. 4. Graphical representation of an Hammerstein
model of muscular dynamics Hunt et al. (1998).
Hammerstein-Wiener models generalise further these
types of models by adding a further static nonlinear
map after the ARX transfer function.

For an example of literature modelling muscular dynamics
through NARX approaches see, e.g., Previdi (2002).

We notice that machine-learning inspired approaches such
as NN and fuzzy models may achieve great generalization
capabilities when modeling input-output muscle dynamics,
but have also the drawback of being more difficult to
be used for automatic control purposes (e.g.,controlling
the volume of the VPI so that the resulting vaginal
pressure will likely follow a pre-specified pattern). On
the other hand, Hammerstein-Wiener and more control-
oriented NARX models have also been proven to be
capable of high approximation capabilities for various
medical applications (e.g., Bro and Medvedev (2017);
Langdon et al. (2016)). In the paper we thus explore the
approximation capabilities that Hammerstein-Wiener and
some NARX strategies have on the available dataset.

4. RESULTS

For notational clarity, let ¢ = 1,...,43 denote the patient
ID, and D; its associated dataset. Every D;, as described
in Section 2, is composed by 4 time-series signals. Letting
t denote the time index !, these signals are:

e m;(t), boolean, indicating if patient ¢ was watching a
movie at time ¢ or not;

e /;(t), non-negative integer, indicating the perceived
pleasure level of patient ¢ at time ¢ (this signal is
nonzero only when a movie is being played);

e v;(¢), indicating the volume of the VPI at time ¢ for
patient ¢;

e p;(t), indicating the measured aggregated pelvic floor
muscles pressure at time ¢ for patient 7.

Recall then that during the collection of the generic
dataset D;, patient ¢ was exposed to 6 movies (see, e.g.,
Figure 3). For practical reasons in the following we divide
each D; in three parts: the first, composed by the first
two movies, is neglected (the reason being that in this
initial part of the trial the patient acclimatizes with the
experiment during the first movie and the balloon was
not inflated during the second movie); the second part,
composed by the 3rd and 4th movie, is used for training
purposes (and will be denoted with D*#i%); the third part,

1 More precisely, all the various signals have sampling periods equal
to 1 second.



composed by the 5th and 6th movie, is finally used for test
purposes (and will be denoted with Dest).

We are then interested in learning individual models of the
generic form

pi(t+1) = ¢z‘( pi(t),...,pi(t
s ..,’Ul‘(t
(-

1),
), 1)
T); 6,)

using the individual training set D™, The quantities
especially of interest for our purposes are:

e the functional structure of ¢;, assumed to be se-
lectable within a finite set of plausible functional
structures denoted with

&= {¢<1>,...,¢<M>}; (2)

e the model order T;, assumed to be selectable within
a finite set of plausible orders denoted with

T = {T(l),...7T(N)}; (3)

e the vector of model parameters 6; whose dimension
depends on which structure ¢; and order T; is used.

As for the set of plausible functional structures ® we
consider the set of available alternative choices when using
Matlab’s system identification toolbox — In practice,
Hammerstein-Wiener models with different structures for
the input and output nonlinearities, plus wavelet, tree-
partitioning, and sigmoid NARX models? .

An “individualized” learning process for every specific
patient may then be performed implementing the following
pseudo-code:

(1) for every potential structure QSE]) € & and model
order 7 € 1,...,50 learn the model using patient
i’s training set Dirain;

(2) select the best model structure, order and parameters
for patient 7 as that triplet that leads to the best fit
in the test set Dest.

In general, this strategy leads to individual models that
might differ in their types and/or orders. Different model
structures, nonetheless, make the task of comparing and
clustering different patients difficult. Using only one model
type and model order for learning the individual model
parameters, on the other hand, has the potential drawback
of reducing the generalization capabilities of the estimated
models.

To evaluate this trade-off quantitatively there is the need
for solving the ancillary question of how to select the model
type and order among the alternative competing choices.
We thus consider the following strategy (the superscripts
m and n are a mnemonic for remembering when quantities
refer to specific model structures and orders):

(1) for every patient ¢ learn M - N models (i.e., one
for each couple (¢(™,T() of potential alternative
model types and order choices) using the individual

training set D", This means learning for each

patient i M - N different parameters vectors @W’”);

2 Notice that neural networks were not taken into consideration.
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Fig. 5. Average fits on the test sets for various potential
model types (the model order being here implicitly as-
sumed to be, for each model type ¢(™), that one that

maximizes .T(m’n) over n). Legend: A = Hammerstein-
Wiener (HW) piecewise (pw).linear - pw.linear, B
= HW pw.linear-saturation, C = HW poly.-poly., D
= sigmoidnet, E = ARMAX, F = HW pw.linear-
deadzone, G = wavenet, H = treepartition.

(2) for every learned 55’”’”) (thus for every patient 4,
model type m and model order m) compute the
simulated pressure

ﬁgm,n) — ¢§m,n) (ﬁgm,n)’vi’ei ; ’g\l(m,n)) (4)
where c/)gm‘n) is a structure of type m and order n and
we tacitly let the signals v; and £; above belong to
the test set DI, omit writing the time delays, and
assume that the initial conditions are known and set
to be equal to the measurements;

(3) for every simulated pressure ﬁgm’n)

the test set as

|pi — mean(p;)||

compute its fit in

o ﬁ(zm,n)

D;

Fimm = 100- |1 . (5)

(4) for every couple (m,n) of potential model type and
model order compute its average fit over the set of all
the patients, i.e., compute

() &
Va3 mn) L _ B Z}-i(mm); (6)
i=1

(5) select the “best” model type m* and model order
n* as that couple that is associated to the highest

7(m1n)
average fit F .

Notice that since this procedure is reminiscent of a cross-

validation approach we do not employ information criteria

like Akaike or Bayesian for penalizing higher model orders.

Figure 5 shows then a summary of the results obtained
following the procedure above. More precisely, it reports

the average fits 7(m’n) for a subset of potential model
types, each associated to its best model order. Interest-
ingly, the 3 model types returning the best average fits are
all Hammerstein-Wiener models and all with similar func-
tional structures in the input and output nonlinearities.
This seems to indicate that for our specific framework of
modelling pelvic floor muscular pressure as a function of
vaginal dilation we recover the same functional structures
that have been proposed in the literature for modelling
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Fig. 6. Histogram of how many patients have a specific
model order as their best individual one, as deter-
mined through strategy S1 above.

generic muscular force as a function of EMG levels, see for
instance Hunt et al. (1998).

In the following, assume thus the “best model type” m*
to be “Hammerstein Wiener, piecewise linear input and
output nonlinearities”, as indicated in Figure 5. We then
quantify how much the performance of the individual

estimators @Em*’n*) may vary depending on the particular
patient under consideration, given the “best” model type
m* and model order n* as fixed (i.e., we analyze the spread

of ]-"i(m*’"*) over i). Instrumental to the final evaluation,
we first check the sensitivity of the fit indexes on the model
order. Consider thus the alternative strategy:

S1) select “best individual model order” that individual

order n; that maximizes the individual fit .FZ.(m*’n)

over n;

Figure 6 refers to strategy S1 above and plots how many
patients had a certain individual model order as their best
one. Unfortunately the plot does not give clear indications
on what may be a suitable n* for strategy S1, in the sense
that the curve is neither unimodal nor with a small overall
spread. Considering not only how many patients have a
specific model order as best fit (as shown in Figure 6) but
also the actual fit values, the best order turns out to be
n* =4.

Figure 7, instead, compares the histograms of two sets of

fit indexes: the set of indexes fi(m*’n*) obtained by fixing
the model type and order to be the same for the various
patients (named “fixed order” in the figure), and the set

of indexes .Fi(m ) obtained using strategy S1, i.e., where
the order of the models are individual variables (named
“individual order” in the figure). As expected, the best
fits can be obtained when allowing individual choices of
model orders. The trade-off becomes thus the following:
from practical reasons, allowing individual model orders
might help getting models with better prediction capa-
bilities. Restricting the models to have the same orders
on the otherA hand allows to compare different estimated
parameters 0; for different patients; this in its turn enables
introducing generic algorithms for grouping and clustering
the patients all together.

For the sake of completeness, we then consider the strategy
the same model type and order for all patients (and more
precisely the ones determined when computing Figure 5).
We thus report in Figure 8 the simulation results for the
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Fig. 7. Histograms of how for many patients a certain fit
in the test set was reached considering the model
type and order to be the ones determined when
computing Figure 5 vs. considering the model type
fixed but keeping the model orders independent for
each patient.
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Fig. 8. Comparison of the simulation results for the pa-
tients associated to the best fit (left panel) and worst
fit (right panel), considering models whose type and
order are the ones determined when computing Fig-
ure 5.

patient associated to the worst fit against the simulations
relative to the patient with the best fit. The simulation
results shows that for the best case the learned model is
qualitatively able to reproduce the features of the mea-
sured time series. For the worst case, instead, the simulated
pressure has very poor approximation capabilities. This
indicates that for some patients, considering additional
data or modelling possible disturbances might be needed
to obtain better models.

5. CONCLUSIONS

This paper presents results on data-driven modelling of
the pelvic floor muscles dynamics for healthy patients
undergoing vaginal dilation exercises through an inflatable
balloon. For the available dataset, the pressure dynamics is
best modelled as a Hammerstein-Wiener model with piece-
wise linear input output maps, a fact that is reminiscent
of similar results in the medical literature dedicated to
numerically modelling the dynamics of muscular pressure
as a function of EMG levels.

In the paper we specifically focused on understanding what
are the effects from a system identification point of view



of enforcing the model type and model order for capturing
the dynamics of all the various patients: in a sense, we
aimed at checking whether different patients share dynam-
ics with approximately the same functional structure. The
results have been though partially contradictory: even if,
as said above, Hammerstein-Wiener structures seemed to
capture the collected evidence for all the various patients,
we haven’t been able to find a common order for the
linear blocks of the various patients that led to satisfactory
approximation capabilities for every patient. This is not
ideal from a modelling perspective, since having the same
model structure but different model orders for different
patients prevents being able to compare (and thus group)
the patients by means of comparing (and grouping) their
estimated parameters.

In any case this works takes a step towards answering the
problem of how to personalize vaginal dilation patterns
by building dynamical models that are control-oriented.
More precisely, personalizing the dilation patterns requires
predictive models, i.e., models that can accurately forecast
what will be the short- and long-term effects of applying
specific dilation patterns to a specific patient in a specific
condition. Here we obviously did not solve the entire
problem, but rather focused on finding connections among
few of the variables that are involved in the system. Future
works thus include performing medical trials that involve
more sources of information and extend the models derived
up to now.
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