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Abstract

Energy efficient control of server rooms in modern data centers can help reducing the energy
usage of this fast growing industry. Efficient control, however, cannot be achieved without: i)
continuously monitoring in real-time the behaviour of the basic thermal nodes within these infras-
tructures, i.e., the servers; ii) analyzing the acquired data to model the thermal dynamics within
the data center. Accurate data and accurate models are indeed instrumental for implementing
efficient data centers cooling strategies. In this thesis we focus on Open Compute Servers, a
class of servers designed in an open-source fashion and used by big players like Facebook. We
thus propose a set of appropriate methods for collecting real-time data from these platforms and
a dedicated thermal model describing the thermal dynamics of the CPUs and RAMs of these
servers as a function of both controllable and non-controllable inputs (e.g., the CPU utilization
levels and the air mass flow of the server’s fans). We also identify this model from real data and
provide the results so to be reusable by other researchers.
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Chapter 1

Introduction

Data centers are prominent infrastructures of the current data-driven societies, and they are
becoming more numerous, bigger in size, and more complex in terms of the number and behavior
of their internal components. Data centers consume considerable amounts of energy: in 2013
data centers consumed an average power of 11.8GW in Europe alone. This is approximately
3% of the total electrical power produced across the continent and with this a yearly overall
value of 38.6 million tonnes of CO2. One strive is thus to try to make them as energy-efficient
as possible. It is predicted that by implementing the best practices in data centers one can
accomplish energy savings up to 15,500GWh per year in the EU alone. This is approximately
equivalent to the energy consumed by 1 million European households yearly, which gives 1.1
billion euro in electricity costs saved and 5.4 million tonnes less of CO2 emissions [42].

Although improving the energy efficiency of data centers can be achieved starting from dif-
ferent perspectives, modeling and control play a vital role in addressing this important issue.
For instance, as mentioned in [30], three of the best practices in attaining energy efficiency in
datacenters are Optimize Air Management, Design Efficient Air Handling, and Improve Hu-
midification Systems and Controls. Since all of these three best practices require appropriate
modeling and efficient control, here we focus on how to improve thermal cooling in datacenters
(known to account for between 40%− 50%, depending on the studies, of the total energy usage
in data centers [23,25]).

On the other hand, the architecture of the thermal control strategies in datacenters typically
comprises three different layers: server level, rack level and datacenter lever. Here we focus on
the lowest one, the sever level, and explicitly consider the servers designed in the Open Compute
Project (OCP) [13]. This choice reflects our belief that working with an open source hardware
platform will be beneficial since our results can provide: i) collaborative opportunities to re-
searchers and developers around the globe; ii) information for developers in the OCP program
to enhance the efficiency of the current servers; iii) a verifiable methodology exploitable by
designers of other types of servers during the design stage.

1.1 Introduction to data centers
A data center is a building specified for hosting servers (i.e., computer systems that run soft-
ware applications that provide services for other programs or devices), and their peripherals (see
an example in Figure 1.1). These software applications can be anything form running finan-
cial transactions or simulations to cloud based services, like social networking or cloud storage
services.
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Figure 1.1: TierPoint datacenters, Dallas [1].

Data centers are the pillar of today’s IT society, since technologies like banks, hospitals,
governments and everything els that is IT-based relies on data centers. As the mobile and the
internet community is growing each day, so does the dependency of data center storage. Data
centers are not only vital in an IT-based view, they are also very beneficial from an economical
standpoint. For example, the establishment of Facebook’s data center in Luleå contributed in
2012 to approximately 1.5% of the local areas entire economy, and is forecasted to generate
around 9 billion SEK of revenues, and engage 4,500 full-time jobs over the course of ten years
nationwide [54]. As this example shows, the data centers industry has become a billion scaled
market with enormous economical benefits.

1.2 The structure of data centers
There are many different types of data centers build for a lot of different applications. The
simplest way of categorising them is by size:

• mini\small size data centers: these systems employ a hundred racks or less, and are
normally used for smaller businesses, like experimentation facilities (e.g., the small 10-
racks data center module hosted by Swedish Institute of Computer Science ICE (SICS) in
Luleå [18], Figure 1.2, or modular server containers, e.g., the Sun Microsystems Modular
Datacenter shown in Figure 1.3);

• mid size data centers: these systems employ between a hundred to a thousand racks,
and are typically used for medium size businesses;

• large size data centers: these systems host more than a thousands racks, and are
normally used by huge corporations like Microsoft, Google and Facebook. These premises
may be very wide (e.g., the Facebook’s data center in Luleå, Sweden is shown in Figure 1.5).
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Figure 1.2: The SICS datacenter, Luleå (courtesy of Pär Bäckström).

Figure 1.3: A Sun Microsystems Modular Datacenter [2].

Figure 1.4: Table summarizing the categorization of different data centers by size as proposed
in [6].
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Figure 1.5: Aerial view of the Facebook datacenter in Luleå [5].

The infrastructure within a data center can be structured into three main parts, namely:

• Information Technology (IT), analyzed in Section 1.2.1;

• The Cooling Technologies system (CT), analyzed in Section 1.2.2;

• The power distribution system (PD), analyzed in Section 1.2.3.

Figure 1.6: Physical layout of a generic data center [19].

1.2.1 The Information Technology system
The IT system comprises mainly of computer systems, i.e., servers, storage devices, and network
hardware. The IT system is the main infrastructure within a data center, since it contains the

4



main functions that should be provided by the data center itself (i.e., the IT services, e.g., virtu-
alization, databases, web hosting, financial transactions, operating systems, clouds computing,
etc). The IT components uses a huge amount of energy and nearly all of this energy is eventually
transformed into heat. All this heat needs then to be rejected and this is where the CT system
(which is explained in details in Section 1.2.2) comes in.

1.2.2 The Cooling Technologies system

As said in the previous subsection, the IT systems produce a huge amount of heat that needs
to be removed. There are many different architectures for cooling data centers, but the main
ones are Chilled water systems, Computer Room Air Conditioning (CRAC) systems, Rear door
cooling and Liquid cooling systems. All these types of strategies are described in details in the
following subsections.

1.2.2.1 Chilled water system

A chilled water system (also called a Computer Room Air Handling (CRAH) system) is a com-
bination of a CRAH joined together with a water chiller (see Figure 1.7 for a schematic view).
The CRAH cools the air inside the IT room by drawing the warm air across chilled water coils.
The heated water in the coils are then cooled by being circulated through a water chiller, which
is removing the heat with the help of a cooling tower. The cooling towers are located outside
the data center and it cools the water from the chiller by spraying it on an opportune fill (i.e., a
sponge-like material), that let some of it evaporate. This eventually gives the same cooling effect
as the transpiration of sweat on a human body. Notice that the design of the CRAH system
can vary depending on the type of chiller used in the system. Typical designs are water-cooled
chillers, glycol-cooled chillers and air-cooled chillers [26].

Figure 1.7: Example of a chilled water system [26].
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1.2.2.2 Computer Room Air Conditioning systems

The CRAC system can be constructed in three different ways: as an air-cooled CRAC; as a
glycol-cooled CRAC; or as a water-cooled CRAC (see Figure 1.8 for their schematic views). An
air-cooled CRAC system is typically constructed by joining an air-cooled CRAC and a condenser
together. The heat in the IT room is in this way removed by blowing air through the evaporator
coils that are inside the CRAC (normally from top to bottom). The evaporator coils are then
connected by opportune refrigerant lines in a loop with the condenser. In the pipes a refrigerant
is circulated with the help of a compressors. The refrigerant cools the coils inside the CRAC
by evaporation and then removes the heat to the outside environment by condensation through
the condenser. This is called a Direct Expansion (DX) refrigeration cycle. Glycol1 based CRAC
systems operate in a similar fashion as the air based ones, except that in this case the entire
DX refrigeration cycle is contained inside the CRAC system. The heat is transported from the
refrigeration cycle using a heat exchanger, that gathers the heat in the glycol liquid, and then
circulates it with the help of a pump to an outside standing dry cooler. The dry cooler then
dissipates heat from the glycol to the outside environment. Finally, water-cooled CRAC systems
use the same principles as glycol based ones, but instead of glycol they employ water to be
pumped to a cooling tower (as mentioned in Section 1.2.2.1) [26].

Figure 1.8: Air-cooled CRAC (above), Glycol-cooled CRAC (middle) and Water-cooled (below)
CRAC. [26]

1A liquid blend of ethylene glycol and water.
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1.2.2.3 Rear door cooling system

Rear door cooling systems operate in such a way that each rack is equipped with a rear mounted
cooling door. In its turn the cooling door is equipped with fans that draw the warm air from the
rack towards a heat exchanger mounted on the door itself (usually so-called air-to-liquid heat
exchangers, i.e., pipes with circulated water). This circulated water is then cooled with the help
of an external cooling option, e.g, a chiller, a dry cooler or a cooling tower. Notice that this type
of systems is usually used in a combination with chilled water or CRAC-based systems.

1.2.2.4 Liquid cooling

Another cooling technique that is becoming more and more popular is to exploit liquid cooled
systems. Since this thesis focuses on air cooled data centers, liquid cooling is not specifically
considered here, but just mentioned for completeness.

In brief, there are two main techniques for liquid cooling: on-chip liquid cooling, and sub-
merged liquid cooling. In the on-chip liquid cooling systems cold-plate heat exchangers are
mounted in direct contact with the IT components and cooled by passing some liquid coolant
thorough opportune micro-channels within the cold-plate. In submerged liquid cooling systems,
instead, the entire server racks are submerged in a dielectric fluid inside an enclosed cabinet. This
dielectric fluid then releases heat to an opportune heat exchanger, so that the overall temperature
of the dielectric fluid remains low enough.

1.2.3 The power distribution system

The data centers subsystems related to the power distribution are Power Distribution Units
(PDUs), power conditioning units, backup batteries and generators. There are different ways
to construct a power distribution system inside a data center, but the infrastructure of the
system mainly depends of the size, the flexibility and the mobility requirements of the data
center. The power distribution infrastructures typically used today are: panelboard distributions,
traditional field-wired PDUs, traditional factory-configured PDUs, floor-mounted modular power
distributions, modular overheads or underfloor power busway distributions (see Figure 1.9 for a
schematic summary of these strategies). These technologies are then discussed in details in the
next subsections.

Notice that data centers need very stable electricity supplies, thus they are typically placed
in places where there is a lot of electricity available and redundancy in the distribution network.
For example, Northern Sweden is a renown location for deploying data centers thanks to its
modern infrastructure in delivering electrical power and to being a stable source of renewable
energy [12].

1.2.3.1 Panelboard distribution

Panelboard distribution units are mainly used for smaller installations, and when keeping a low
initial cost is a priority over flexibility and mobility. This type of distribution is composed by
wall-mounted panelboards (as in Figure 1.10) that distribute the main power feed through cable
trays to the various racks in the data center. The cable trays are usually installed over the racks
or under a raised floor. Panelboard distribution are custom designed, meaning that most of the
wiring work is done on-site so to fit a specific data center with lower cost components that are
easy and fast to acquire.
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Figure 1.9: Summary of the most typical approaches to implement power distribution within a
data center [52].

Figure 1.10: Examples of panelboard distribution units [52].
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1.2.3.2 Traditional field-wired PDU distribution

Like the case of panelboard distribution units, traditional field-wired PDUs are mainly used
for smaller installations or when initial cost is a priority over flexibility and mobility; at the
same time, field-wired PDUs enable a higher degree of monitoring options than a panelboard
approach. The main power feed is distributed to the PDUs, that are placed throughout the data
center. Branch circuits from the PDUs are then distributed to the racks, either through rigid
conduit below the raised floor or cable trays overhead (as shown in Figure 1.11). Just like the
installation of panelboard distribution, field-wired PDU distribution are custom designed to fit
a specific data center.

Figure 1.11: Traditional field-wired PDUs with either rigid conduit below the raised floor or
cable trays overhead [52].

1.2.3.3 Factory-configured PDU distribution

Factory-configured PDU distribution installations are mainly chosen when initial cost is a priority
as well as having some flexibility and mobility for easy scaling and changes. In contrast with
field-wired distribution strategies, when employing factory-configured distributions most of the
installation work is (as the name says) factory-configured. The PDUs are factory-assembled and
pre-designed to the datacenters demands. The main power feed is distributed to standardized
PDUs that are usually placed right next to the IT racks to bring the distribution closer to the
load. The racks are normally placed one after the other, in succession forming a line, with a
PDU on one side or either side as seen in (as shown in Figure 1.12).

1.2.3.4 Modular power distribution

Modular power distribution is used when flexibility and mobility is prioritized over initial cost,
and is usually more manageable and more reliable than the traditional distribution. The modular
PDUs are build up by factory-assembled modules that can be easily installed without wire work
within the data center. The two main modular power distribution systems are: i) overhead or
underfloor modular distributions, both using plug-in units powered by busways that are placed
respectively either overhead or underfloor to feed IT enclosures, and ii) floor-mounted modular
distributions, which use branch circuit cables and distributed overhead in cable troughs to the
IT enclosures. In these systems enclosures are pre-terminated with breaker modules that plug
into a finger-safe backplane of a modular PDU as shown in Figure 1.13.
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Figure 1.12: Example of a factory-configured PDU placed in a row with the racks [52].

Figure 1.13: Example of an overhead or underfloor modular distribution [52].

Figure 1.14: Example of a floor-mounted modular distribution [52].
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1.2.4 Datacenters as energy consumers

As said in the introduction, data centers consume a great deal of energy and the main contributors
are the IT and CT systems, as summarized in Figure 1.15. Data center enterprises are estimated
to consume on a global scale around 120GW, which is approximately 2% of the worlds energy
consumption (more than the total energy consumption of the entire country of Italy [19]).

Figure 1.15: Summary of the relative sizes of the energy consumption of the various components
of typical data centers [25].

Notice also that with the increase of technology, i.e., social media, the Internet of Things,
4- and 5G, and data-driven medical and biological applications, there is also a rapid growth
of the production and consumption of data. According to Cisco Global Cloud Index (CGCI)
Forecastand Methodology, 2015-2020 report [24] the annual global data center IP traffic will
reach 15.3 zettabytes (ZB) in 2020, up from 4.7 ZB in 2015, for a compound annual growth rate
(CAGR) of 27 percent from 2015 to 2020 (as shown in Figure 1.16). Global data-center demand
will thus continue to increase, with more than 60 new large data centers expected in western
Europe by 2020 [54].

Figure 1.16: Forecasted global data center IP traffic growth [24].
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1.2.5 Other ways to reduce the environmental footprint of a data cen-
ter

There are several other strategies that can be implemented to reduce the environmental footprint
of a data center that are outside the scope of the thesis. For completeness, a (non-exhaustive)
list of actions that could be taken for improving the energy efficiency is to:

• make algorithms faster/needing less CPU power;

• make CPUs more energy efficient;

• implement heat recovery/re-usage strategies (since this indirectly means to waste less en-
ergy);

• adopt liquid cooling systems (since these ease the implementation of heat recovery tech-
nologies).

1.3 Statement of contributions
In brief, in this thesis we perform three specific tasks:

1. propose an open-source software that allows the real-time monitoring of OCP servers (and
provide the code in [14]);

2. propose a control-oriented model of the thermal dynamics of OCP servers and validate it
using real data;

3. propose how the software and the thermal model can be used for predictive control purposes.

Notice thus that we take a control-oriented perspective: the monitoring software is specifically
made for returning information useful for the online modeling and control of OCP hardware. Plus
the model of the thermal dynamics is explicitly made for being used in conjunction with control
schemes based on Linear Quadratic Regulators (LQRs) or Model Predictive Controls (MPCs).

Also notice that the parameters defining the thermal model, gathered using data collected
in an experimental data center, are provided to allow other researchers to both simulate and
develop other control schemes.

1.4 Structure of the thesis
Section 2 describes the aim of this master thesis in more details and formulates the problems
tackled in the thesis. Section 3 reviews the existing literature on the topic. Section 4 describes the
platforms considered in this thesis from a technical perspective. Section 5 describes the software
used and the suite developed for the remote monitoring of the considered servers. Section 6
describes the proposed control-oriented thermal model of Open-Compute servers and how to
identify this model from real data. The section also describes the model that was identified from
the data collected of an experimental data center. Section 7 proposes in more details how to
use the results provided in this thesis for control purposes. Section 8 summarizes what has been
learned from our efforts and describes some future research directions.
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Chapter 2

Problem formulation
The aim of this master thesis is to provide the ancillary results that are essential to improve
the thermal cooling in data centers, i.e, the CT, in the most energy efficient way, without
compromising the Quality of Service (QoS). This energy efficiency can be achieved through
control-oriented perspectives using model-based approaches. For example, having an accurate
control-oriented model of the server enables using advanced control strategies based on LQRs
or MPCs approaches. These strategies, though, require models describing the dynamics of the
system. This means that to improve the thermal cooling in data centers there is a need for
control-oriented models of the thermal dynamics within the data center.

This thesis deals with the problem of collecting information from the servers and processing this
information to obtain these control-oriented models, to be used in the future for operating the

data center in an energy-efficient way.

The thesis thus proposes a set of appropriate methods for collecting real-time data from
these platforms and a dedicated thermal model describing the thermal dynamics of the Central
Processing Units (CPUs) and Random Access Memorys (RAMs) of these servers as a function of
both controllable and non-controllable inputs (e.g., the CPU utilization levels and the air mass
flow of the server’s fans). The thesis also proposes tailored identification algorithms for estimating
this model from real data, plus provides the results so to be reusable by other researchers.

To achieve this, the thesis was divided into the following tasks:

• Monitoring: To be able to make models describing the dynamics of the system, there is
the need for collecting data that capture the behaviour of the system in all its different
working conditions. The data to be collected should thus allow the user to make an accurate
thermal model of the system. The most important types of data are the following:

– the temperatures of the CPUs and the RAM banks;
– the speed of the fans;
– the power usage of the CPUs and the RAMs.

• Modelling: Formulate a simple but sufficiently thermal model of the system that can be
used for model-based control.

• System identification: Estimate the parameters of the system using the thermal model
and the collected real-time data. As mentioned before, there is also a need of running the
system in different conditions by stressing the server’s CPUs in different ways, to know
how the system behaves at a set of different operation points.

• Control: How to utilize the tasks above to maximize the electric efficiency of a data center
by optimizing the control using LQRs or MPCs approaches.
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Chapter 3

Literature review

3.1 The structure of data centers from control perspectives

From a control perspective, the main aim of controlling a data center is to jointly control the CT
together with the IT to improve the total energy efficiency of the datacenter while maintaining a
specified QoS. To achieve this goal, it is beneficial to inspect the structure of data centers from
control perspectives.

As mentioned before in Section 1.2, a data center can be structured into three main infras-
tructures, i.e., the IT system, the CT system and the PD system. Looking at the system from
control organizational standpoints, the operations of a data center can be structured using a
hierarchy of three different types of layers:

• Server level, described in more details in Section 3.1.1

• Rack level, described in more details in Section 3.1.2

• Data center level, described in more details in Section 3.1.3

For completeness, these layers are shown in Figure 3.1.

Datacenter level Rack level Server level

Figure 3.1: Datacenters main control organization levels: the data center level, the rack level
and the server level.
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3.1.1 Server level
A single server can be schematized as in Figure 3.2.

cold air

warm air

IT load

electrical
power

Figure 3.2: Scheme of a single server when considering it from control perspectives.

When looking at a single server from a control perspective, the main strategies through which
one can improve the energy efficiency of the equipment while maintaining a specified QoS are:

1. Reduce its energy usage by adaptively turning off those components that are idle (e.g., the
network devices or even whole servers) [32,58];

2. Reduce the peak power consumption of CPUs leveraging predictive Dynamic Voltage and
Frequency Scaling (DVFS) techniques (e.g., by modulating the clock frequency based on
the current demands) [38,51];

3. Optimize the flow of the coolant through the enclosure of the server so as to satisfy to
given temperature constraints on the internal components while minimizing the electrical
power that is spent to produce this flow (e.g., the power spent to run the fans in air-cooled
servers).

Regarding the last technique, one may address the problem of controlling just the local fans
of the server with the consideration that the temperature of the inlet coolant is given [36], jointly
control local fans with the infrastructural ones in free air cooling data centers [22, 39, 40], or
connect the fans control problem with the one of forecasting and allocating the IT loads oppor-
tunely through predictive control strategies [45]. These approaches exploit model-based control
strategies to achieve energy efficiency. Notice, however, that the thermal models considered in
the papers mentioned above are often general-purpose and do not consider the detailed thermal
structure of specific server platforms.

3.1.2 Rack level
A data center rack can be schematized as in Figure 3.3.

When looking at a whole rack from a control perspective, the main strategies through which
one can improve the energy efficiency of the equipment while maintaining a specified QoS are:

1. Maximize the usage efficiency and minimize the energy usage by optimally schedule tasks,
making active servers run at 100% and enabling ideal servers to be turned off or entering
a low-power mode. A problem with this approach is often the setup time, i.e., the time
required to turn a server off and back on. The two main control techniques studied in
this matter is the migration of Virtual Machines (VMs) [31, 33, 37, 53, 56, 57] and optimal
scheduling of the setup time [27–29,50];
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IT load

electrical
load

Figure 3.3: Scheme of a single rack when considering it from control perspectives.

2. Thermal aware workload placement scheduling (e.g., task scheduling that consider the
thermal properties [20] or prediction model based thermal aware scheduling [35])

3. Reduce the energy consumption by implementing IT loads assignment (e.g., dynamically
adjusts the IT resources, using an adaptive control system, between servers that are divided
among different tiers [41]). This requires to dynamically schedule the IT loads of several
servers in concert to balance the computational load across the data center’s space or even
multiple data centers [43];

4. Power and cooling management of server rack cabinets by implementing control strategies
for the fans of the rack (e.g., a model-based systems approach that combines fan power
management with conventional server power optimizations [55]).

3.1.3 Data center level

A whole data center can be schematized as in Figure 3.3.
At the broadest control perspective, controlling the whole datacenter to improve its energy

efficiency is often done by splitting the data center in zones, applying different control techniques
on these zones, and combining the control actions so to make the different zones act synergically.
This leads to the following list of techniques:

1. Implementation of hierarchical/distributed based control strategies, i.e., controllers with
specific assignments reflecting their respective level in a hierarchical fashion (e.g., time
based hierarchical levels where fast dynamics of the IT system are managed at the lower
levels and slower thermal dynamics of the CT system at the higher levels [44,46,47,49]);

2. Energy efficient control strategies on a smart grid (e.g., interacting with the power-grid
by taking advantage of time-varying electricity prices, renewable energy usage and reliable
energy [48];
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Figure 3.4: Scheme of a whole data center when considering it from control perspectives.

3. Installation of various CRAC control systems (e.g., Control adjustable CRACs that change
and redirect the supply air flow and temperature depending on the condition throughout
the datacenter [21]).

Notice that making a data center entirely monitorable and controllable enables better de-
cisions and synergies. Moreover, summarizing the papers mentioned above, there exist strong
IT-CT couplings, so that operating IT and CT separately is suboptimal. In other words, both
how and where the workloads are executed affect the total energy consumption: indeed the way
workload is executed impacts the efficiency at which IT operates, while the location where the
workload is executed impacts the efficiency at which CT operates.

Often data centers are modular, and this suggests (as done in the previously mentioned pa-
pers) the implementation of hierarchical/distributed estimation and control strategies. Nonethe-
less this is problematic because cooling resources are usually shared, so distributed controllers
need data from a whole-data center-level point of view. At the same time, data centers are also
large-scale systems: the number of state variables ranges in the order of ten of thousands for a
medium-size data center, since it is useful to let each CPU temperature, workload, and amount of
resources used be part of the state of the system. This means that there is an intrinsic trade-off
between implementing centralized or distributed control strategies.

Also, notice that every different data center has very specific thermal dynamics, and there
is no general “whole data center model”. This complicates the development of general-purpose
control strategies.

Finally, another problem is that there is no algorithm that accurately models the air flows
and that is fast enough to be used for real-time control.

3.2 Monitoring for maintenance and alerts
Since 2010 the need for reliable Data center infrastructure management (DCIM) systems has
continuously increased, with the expansion of datacenters demands. There are almost an endless
supply of different DCIM vendors to choose from. A selective few of the main ones can be
summarized as follows [7]:

• ABB Ability™;
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• Nlyte Software;

• Emerson Network Power;

• Schneider Electric.

Notice that all the vendors above are famous businesses with all-included solutions. However
there are also many smaller vendors with open source solutions like Zabbix, Opendcim and Device
42.

We also notice that in many datacenters the facility and IT are operated separately in different
teams: for example the building automation system, the power supply control system and the
cooling automation system are typically managed separately, often also by the different vendors
who delivered the systems [3]. Doing holistic monitoring as in Figure 3.5 would instead allow for
detecting more faults and managing the whole structure in a more holistic way. The problem
is then that this type of monitoring requires more complex and holistic models, and this raises
the issue of how to connect the various models of the most important components into a unique
model.

Figure 3.5: A holistic approach on automation in datacenters [3].
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Chapter 4

The Platforms

4.1 The Open Compute Platform

The Open Compute Project initiative was started by Facebook in 2011, and supports the devel-
opment and sharing of data center designs [13]. The project has fostered an open engineering
community that aims at increasing several performance indicators of data centers and promi-
nently their efficiency. Major data center operators (e.g., Nokia, Intel, Microsoft) collaborate
within the project on many different parts composing data centers (e.g., networking infrastruc-
ture, racks, power units, etc.).

4.2 Facebook’s Windmill V2 server blade

In this thesis the main focus was on an Open Compute Server (OCS) platform based server,
more specifically on the OCS platform Facebook’s Server V2 Windmill (shown in Figure 4.1 and
henceforth generically referred to as the OCS blade). This server is equipped with two Intel Xeon
E5-2670 CPUs and 16GB of memory partitioned in 8 Dual In-line Memory Modules (DIMMs)
banks. In the rear of the server two system fans were installed to push out the hot air and to
create an air flux through the server. The specifications and schematics of the OCS blade can
be seen in Table 4.1 and Figure 4.1. Notice that our blade were only equipped with 4 DIMMs
per socket and not the total 8. A real photo of our blade can also be seen in Figure 4.1.

The OCS blade comes from an Open Rack V1 system. The system is a custom rack that
houses Open Compute Project server technologies. The Open Rack V1 system uses an all-
encompassing design to accommodate compatible Open Compute Project chassis components,
which include the power solution as well as input and output voltage distribution.

4.3 The Dell PowerEdge R730 server blade

As previously stated the main focus of this thesis was on the OCS blade, but because of access
limitation to the OCS blade in the beginning of the thesis, a Dell server was also used. The
server in question was the Dell platform PowerEdge R730xd (shown in Figure 4.2 and henceforth
generically referred to as the Dell blade). The server is equipped with two Intel Xeon E5-2620
CPUs and 256GB of memory partitioned in 16 DIMMs banks. The specifications of the Dell
blade can be seen in Table 4.2. The Dell server is equipped with six system fans to cool the
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Platform Intel Xeon Processor E5-2600 product family platform

CPUs 2 Intel Xeon Processor E5-2670

Threads 2 threads per core

Cores 8 cores per socket

DIMM Slots
Up to 16 total DIMM slots
Up to 8 DIMMs per CPU
Up to 2 DIMMs per channel
2 system fans

Table 4.1: Specifications of the OCS Facebook blade Version 2.0 Windmill

RAM modules CPUs

air inlet air outlet & fans

Figure 4.1: Blueprint of the OCS Facebook server V2.0 Windmill (above) and photo of one of
the servers used in our experiments (below). Notice that the picture shows a server from which
all the hard disks and one of the heat dissipators of the CPUs have been removed.
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server components. Notice that our blade were only equipped with 8 DIMMs per socket and not
the total 12, hence partitioned in 16 DIMMs banks.

Platform Intel Xeon Processor E5-2600 product family platform

CPUs 2 Intel Xeon CPU E5-2620 series

Threads 2 threads per core

Cores 6 cores per socket

DIMM Slots
Up to 24 total DIMM slots
Up to 12 DIMMs per CPU
Up to 2 DIMMs per channel
6 system fans

Table 4.2: Specifications of the Dell PowerEdge R730xd blade

DIMMs

CPUs

fans

air outlet

air inlet

Figure 4.2: The Dell blade layout inside SICS ICE datacenter [4].

4.4 Limits and constraints

As for the structural limits of the considered platforms, we notice that:
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• the rotational speeds of the fans are limited, so that the control values u are constrained
in the hyperrectangle defined by the extreme points umin, umax;

• the temperatures of the IT components shall be kept below some specified safe limits, that
implies that there exist state constraints of the kind xc � xcmax;

• the sensors in the two servers used, i.e., the OCS blade and the Dell blade, have quite
limited resolution and sensitivity for the purpose of this thesis. More accurate thermal
information would help to a more superior estimation of the servers unknown parameters.
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Chapter 5

Monitoring Dataservers

This section describes the approach that we developed for the remote monitoring of the thermal
status of a generic OCP server remotely through Python scripting. Our aim is indeed to be able
to gather information remotely on the thermal state of a server while it is operating (instrumental
for both monitoring its performance and controlling the associated air outlet fans) by interfacing
with the firmware of the server and its operating system.

More specifically the developed software suite gathers information on the fans, on the CPUs
and on the RAM modules. Since the contributions of the other IT components to the thermal
properties of this type of servers are negligible, we indeed neglected them. In practice, thus, the
software monitors:

• the temperatures of the CPUs and the RAM banks;

• the speed of the fans, since these affect the convective thermal exchanges of the heat sinks
of the components;

• the CPUs computational loads as an approximate indication of their power usage.

Notice that one would also be interested in measuring the power usage of the RAM modules;
Doing this monitoring by software, using e.g. performance counters, is however a difficult task,
given the volatility of these memories. This task is still currently subject to on-going research.
Here, instead, we approximate the average power consumption of the RAM banks by the in-
stantaneous amount of resident memory. This ansatz is further discussed when presenting the
validation results in Section 6.7.

The developed remote monitoring suite has been developed laddering on two existing open
technologies, i.e., Intelligent Platform Management Interface (IPMI) (discussed in Section 5.2)
and Simple Network Management Protocol (SNMP) (discussed in Section 5.1). The structure of
the developed suite is instead discussed in Section 5.3.

5.1 Simple Network Management Protocol (SNMP)

SNMP [16] is an application layer protocol built on the Transmission Control Protocol - Inter-
net Protocol (TCP-IP) suite, and is used for monitoring and managing network devices such as
routers, switches, servers, etc. The SNMP network is build up by a managing computer (man-
ager Section 5.1.1) that queries information from the network devices through a deamon (agent
Section 5.1.2) installed on the network device.
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5.1.1 Manager

The manager or managers are the main computers that send request to the agents in the network.
These computers usually runs some kind of managing software (Network management station
(NMS)). In this thesis the standard NMS called Net-SNMP Command Line Applications was
used, which is provided in the Net-SNMP suite [11] . This make it possible to send specific
SNMP commands directly from the command line on the manager.

5.1.2 Agent

The agent is a managing deamon installed on the network device that is being monitored. It is to
the agent that the manager sends its requests to queries information about the local environment
of the network device. The agent used in this thesis is the standard deamon in the Net-SNMP
suite. The agent stores the information about the local environment of the network device on a
shared database (Management Information Base (MIB)). This database is shared between the
agent and the Manager.

5.1.3 Management Information Base (MIB)

MIB is a database used for managing the entities in a communication network. Most often
associated with the SNMP, the term is also used more generically in contexts such as in OSI/ISO
Network management model. While intended to refer to the complete collection of management
information available on an entity, it is often used to refer to a particular subset, more correctly
referred to as MIB-module.

5.2 The Intelligent Platform Management Interface (IPMI)
specifications

IPMI [10] is a communication protocol led and provided by Intel, that is broadly used for mon-
itoring and management assignments. More specifically IPMI is a collection of network inter-
face specifications that defines how a Baseboard Management Controller (BMC) (an embedded
micro-controller located on the motherboard of the server dedicated to handle all the IPMI
communications) can exchange local information over the network.

Interestingly there exists a plethora of different user-space implementations of the IPMI
protocol; in our case we exploited FreeIPMI [9], a set of IPMI utilities and libraries that provides
a higher-level IPMI language so to simplify its usage. Moreover, to work properly, IPMI requires
opportune drivers and managing tools to be operating in the server. The developed software
suite has been tested using the default Linux driver OpenIPMI [15], but has been built so to
be compliant with standard IPMI commands. Notice also that FreeIPMI has been chosen over
other alternatives (such as, e.g., IPMItool 5.2.2) since it allows higher rate of completed IPMI
queries per second, something that allows to better capture transient thermal behaviours and
thus to obtain better thermal models.

5.2.1 OpenIPMI

OpenIPMI is the most know Linux driver for IPMI, that both contains a full-function IPMI device
driver and a library that supplies a higer-level output, that make easier human understanding.
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5.2.2 IPMItool
IPMItool is one of many utilities for managing IPMI on capable devices. The tool have a
command-line based interface and can interact both locally and remotely over LAN.

5.2.3 FreeIPMI
FreeIPMI is an IPMI system software based on the IPMI v1.5/2.0 specification, that has both in-
band and out-of-band management communication. The FreeIPMI software provides libraries
and tools that enables a great deal of features (e.g, system event monitoring, power control,
serial-over-LAN (SOL), sensor monitoring, etc.).

5.3 CISSI : A control and system identification framework
aimed at server blades

The aim is to help achieve energy savings in data centers through better thermal control schemes.
The first contribution is thus a software suite called CISSI that allows to easily and reliably collect
information from OCP server to be used either offline (for data-driven thermal modelling) or
online (for computing feedback signals in control algorithms).

Since the IPMI and SNMP tools described above are more general-purpose software, the
choice has been to develop a dedicated tool. The provided CISSI suite implements thus three
main tasks:

• monitoring and fetching (potentially also remotely) thermal information from OCP servers;

• stressing the server’s CPUs (for experiment design purposes);

• actuating the server’s fans (for controlling purposes, to ease the prototyping and testing of
different thermal control schemes).

The first two tasks is the ones that allows system identification of temperature dynamics
models of the server blades. The third task for the software suite is to act as an intercommu-
nication between server fans and actuator. This allows the implementation of different control
schemes, where the server fans are controlled in a feedback loop as shown in Figure 5.1.

From logical standpoints the suite is composed by three modules,

the fetch module is a Python script collecting information from the native sensors in an OCP
server using the tools ipmi-sensors and snmpwalk. The collected data comprises informa-
tion on the fan speeds, the CPUs temperatures, the inlet and outlet air temperatures, the
temperatures of the RAM modules, and the CPUs computational loads. The data is then
available to both socket communications or (as shown in Figure 5.1) for saving in an exter-
nal database. The code provided in [14] currently allows to save NumPy .npz or Matlab
.mat files. Analysed in more details in Section 5.3.1;

the stress module is a Python script that changes the loads of the CPUs with an predefined
sampling period with the help of the Linux-based stress test stress-ng [17]. Analysed in
more details in Section 5.3.3;

the control module is a Python script sends Pulse-Width Modulation (PWM) signals to the
fans over the network through the tool Ipmi-raw from the suite FreeIPMI. Notice that
this control strategy requires using the OCP Facebook Server Fan Speed Control Interface
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(FSC) tools [8], and that –despite having been implemented in Python– it can actually
be implemented in other languages by exploiting the provided Application Programming
Interface (API) of the provided fetch module as soon as one connects to its socket stream.
Analysed in more details in Section 5.3.2

The interacting among the modules and with the hardware of the server is described in
Figure 5.1.

remote side OCP server side

control script

socket client

fetch script

socket server

OCS
server

stress script

socket client

external database (not implemented in the proposed suite)

control module

fetch module

stress module

IPMI over
TCP/IP

fans

SNMP or IPMI
over TCP/IP

sensors

local or TCP/IP
communications

TCP/IP
communications

C
P
U

s

Figure 5.1: Overview of the logical structure of the CISSI suite. The fetch module, potentially
residing on an other computer, fetches the raw data from the sensors, processes it, and propagates
the information to who requests it through an opportune socket (also potentially to other external
databases). The control module, that also may reside remotely, gets the processed information
and uses it to compute a control action for the fans that is then communicated back to the server
through opportune IPMI commands. The stress module, residing instead locally in the inspected
OCP server, directly affects the CPUs loads through opportune Python scripts.

This modules are designed to work in two main modes:

• Data gathering mode: This mode aims to solve the first two main tasks to allows system
identification of temperature dynamics models of the server blades. This mode runs both
the fetch and the stress module at the same time. Were the stress module randomly
changes the loads of the CPUs, while the stress module synchronously gathers the thermal
information of the server.

• On-line control mode: This mode aims to solve the third main task to act as an intercom-
munication between server fans and actuator.

5.3.1 Data acquisition module
It is a script written in python, designed to collect thermal information from the server such as:

• Fan speeds

• CPU temperature

• Inlet- and exhaust temperature
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• DIMM temperature

• CPUs computational loads

It does so using two standard interfaces IPMI and SNMP that are discussed in Section 5.2 and
Section 5.1. It then streams the data to a client connected to the server socket as shown in
Figure 5.1. The software can also, instead of continuously stream the data to a socket, save the
data in NumPy .npz file or a MATLAB .mat file. This data can later be used as the input in a
system identification perspective. The main loop of the module rendered in pseudo-code can be
seen in Algorithm 1.

Algorithm 1 Data acquisition component of CISSI
Input: The execution time t and the sampling period T , use_snmp, use_ipmi, "output file"
Output: SNMP and/or IPMI query via socket or output file, i.e CPU temperature, fan speed,

inlet- and exhaust temperature, etc.
1: Connecting to socket client
2: while cur_time < t do
3: for t = 0, T1, T2, T3, . . . do
4: if use_snmp == True then . SNMP triggerd in input
5: Xj(t) ← SNMP query
6: if use_ipmi == True then . IPMI triggerd in input
7: Xi(t) ← IPMI query
8: Send Xj(t), Xi(t) to socket client
9: if "output_file" then

10: Save output_file.m ← Xj(t), Xi(t)

In brief, the desired execution time t and the sampling period T are set and then also the
desire to use either IPMI or SNMP. Both interfaces can be set if wanted. The module collects
the server information and streams the data to a socket or saves it to a desired file. The queries
are done using the tools ipmi-sensors and snmpwalk.

The API of the data sharing mechanism over the socket is to simply send tagged data. Where
variable descriptors and values are comma separated. For example if the two variables a,b with
values 3,4 were obtained by snmpwalk and then send the socket client receives "SNMP:a,3,b,4".

5.3.2 Server control module
The primary task of this module is to be able to control the fans of a server. This can be done
in two different ways, namely:

• Software based, i.e., by sending control signals over the network;

• Hardware based, i.e., by using a dedicated fan controller.

The strategy implemented in this thesis is a software based one. More precisely the chosen
strategy is to use the Ipmi-raw tool from FreeIPMI to communicate with the FSC tools [8] of
an OCP Facebook Server; the FSC software then instructs the BMC of the OCP server to send
an appropriate PWM signal to the fans (in practice, thus, commanding their rotational speed).

The server control module is thus a Python script that sends the desired PWM control signals
to the fans over the network through Ipmi-raw to first FSC and then to the BMC. Despite having
been implemented in Python, it can also be implemented in other languages by exploiting the

29



provided API of the provided fetch module as soon as one connects to its socket stream. In
brief, the module would connect to the socket stream from the fetch module, from Section 5.3.1.
The module would then compute the control action according to the model and post the control
action to the server fans via the FSC.

Remark 1 The server control module were not entirely completed due to lack of support of the
FSC on the used OCS blade.

5.3.3 CPU stressing module
It is a script written in python designed to stress the CPUs of a server blade, with a set sampling
period, to then collect and save the sequence. It does so by using the Linux based stress test
stress-ng.

The main loop of the module rendered in pseudo-code in Algorithm 2.

Algorithm 2 CPU stressing component of CISSI
Input: The execution time t and the sampling period T , "output file"
Output: CPU socket loads
1: Read topology of server, i.e. number of sockets and associated cores per socket
2: Create pseudo random binary signal
3: while cur_time < t do
4: for t = 0, T1, T2, T3, . . . do
5: for socketid in nr_sockets do
6: if cur_load 6= desired_load then
7: socketid ← desired_load
8: if "output_file" then
9: Save output_file.m ← CPUsocketloads

In brief, the desired execution time t and the sampling period T are set. The script then
stresses the CPUs with stress-ng and saves the stressing schedule.

5.3.4 Thermal information collected from CISSI

In this section the thermal information collected from CISSI, when in data gathering mode, are
analyzed in more details. All of the figures below are collected during the same run of the data
gathering mode. In Figure 5.2 it is shown that the two fans, which are controlled by the native
control systems in the data center, seem to act synchronously, i.e, both the fan speeds are affected
similarly by the stressing of both the CPUs (compare this to the dynamics of the temperatures of
the two CPUs, shown in Figure 5.3). Comparing the dynamics of the temperature of the CPUs
and the DIMMs, plotted in Figures 5.3 and 5.4 respectively, we also notice that the temperatures
of the DIMMs are not as directly affected by the stress module as the temperatures of the CPUs.
A direct reason for this is that the stress module built in this thesis focuses on stressing the
CPUs, not the DIMMs. A more direct stressing of the DIMMs could have been implemented
in the module, but this was however not prioritised and thus not completed for lack of time
(and is thus kept as a future work). Figure 5.5 shows the inlet- and exhaust temperature of
the server. The inlet temperature was controlled by acting on the CRACs of the datacenter by
the native control systems and was, as seen in the figure, almost entirely constant during the
test period. Through the figures below it can be seen that the exhaust temperature is instead
affected by a combination of all the temperature changes in the server. Figure 5.6 finally shows
the computational load of the two CPUs in the OCP server during the experiment.
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Figure 5.2: The fan speeds of the two fans in the OCP server during our experiment.
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Figure 5.3: The temperature of the two CPUs in the OCP server during our experiment.
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Figure 5.4: The temperature of the two DIMMs in the OCP server during our experiment.
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Figure 5.6: The computational load of the two CPUs in the OCP server during our experiment.
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Chapter 6

Thermodynamical modelling

6.1 Modelling open compute servers

The goal is to derive a discrete time control-oriented thermal model that captures the thermal
dynamics within the server enclosure with a formalism that can be used for designing online
thermal control strategies. We thus disregard modelling the statistical properties of IT loads,
and instead focus on the most important components of the system from a thermodynamics
perspective, i.e., the CPUs, the RAMs, and the fans forcing air flows within the enclosure.

We thus divide the thermal model as follows:

• as for the air flow model, we consider a static linear model that accounts for potential
mixing effects among the individual fluxes imposed by the fans;

• as for the temperatures of each single electronic component, we assume that the dynamics
follow a first order model.

Moreover, given the structure of the enclosure of the server, we assume that there are no air
recirculation effects, so that the thermal network can be schematized as in Figure 6.1.

Referring to Figure 6.1, for convenience we divide the server in three zones numbered conse-
quentially while traveling from the air inlet to the outlet and indicated with the index i = 1, 2, 3.
The first zone comprises thus the first CPU and the first two DIMM modules; the second zone
comprises the remaining CPU and DIMM modules; the third zone instead goes from the end of
these components to the server’s fans.

Importantly, we assume that the air flows, within the enclosure of the server, are static
functions of the flows induced by the fans. We motivate this simplification through considerations
on the time scales of the various dynamics: in other words, i) the dynamics of the air flow is much
faster than the dynamics of the temperatures of the electronic components; ii) given these fast
dynamics and the fact that our goal is to control the speed of the fans to cool the components,
variations in the flow due to its turbulent behaviour are absorbed by only considering its average
behaviour [34, Chapp. 10 and 11]. In the following subsections we will thus first list the variables
involved in our model, then detail the models of the air flows and of the temperatures of the
components independently, and last combine these sub-models and the notation into a unique
overarching model.
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Figure 6.1: Graphical representation of the thermal network corresponding to the OCP Face-
book Server V2.0 Windmill. The arrows indicate the modelled air fluxes among the various IT
components (with some fluxes from the first to the second column of components dashed for
graphical clarity).

6.2 Notation

We consider the following variables:

• as states, the temperatures of the heat-dissipating IT components (xcij in Figure 6.2), the
temperatures of the various air flows just before hitting the relative target components (xfij
in Figure 6.2), and the temperature of the air at the outlet (xout in Figure 6.2). Notice
that the temperatures of the air flows in zone 1 are equal to the temperature of the air
inlet, and that the temperature of the air flow in zone 3 is equal to the temperature of the
air outlet;

• as exogenous inputs, the average electrical power dissipated by each IT component (pij in
Figure 6.2) and the temperature of the air inlet (xin in Figure 6.2);

• as controllable inputs, the total air mass flow produced by the fans at the outlet of the
server (u in Figure 6.2), assumed to be equal to the total air mass flow at the air inlet.

6.3 Modelling the air flows

To model the air flows within the enclosure of the server we use a set of auxiliary variables that will
not be present in the final thermal model but that are useful to construct it. More specifically
these variables ideally capture the intensities of the air flows among the various components
within the server. The notation used is fi,j→k with i indicating the zone of the server and j
and k respectively the source and the destination (e.g., f1,in→2 indicates the intensity of the flow
from the inlet to the first CPU, f2,1→3 indicates the intensity of the flow from the top DIMM in
zone 1 to the bottom DIMM in zone 2, and f3,3→2 indicates the intensity of the flow from the
bottom DIMM in zone 2 to the fans in zone 3).
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Figure 6.2: Graphical summary of the notation used to model the thermal dynamics of the OCP
Facebook Server V2.0 Windmill. Notice that xf11 = xf12 = xf13 = xin and that xf32 = xout.

Considering the previously posed assumption that the flow in and the flow out have equal
intensity and formulating a model that guarantees the physical prior of mass conservation leads
then to the linear models for zone 1 and 3

f1,in→j = λ1,in→ju,

3∑

j=1

λ1,in→j = 1, (6.1)

f3,j→out = λ3,j→outu,

3∑

j=1

λ3,j→out = 1. (6.2)

As for zone 2, notice that it is convenient to add the further auxiliary variables f2,j , j = 1, 2, 3,
ideally capturing the intensity of the flow hitting component j, i.e.,

f2,j =

3∑

k=1

λ2,k→jf1,in→k. (6.3)

Notice that our assumption of conservation of mass imposes the constraint

3∑

k=1

λ2,k→j = 1, ∀j (6.4)

Also notice that the various λ? are non-negative constants. Moreover, assuming that the flows
do not mix while passing through the various components, it holds that

f3,j→out = f2,j . (6.5)

As for modelling the temperatures of the various air flows, we approximate the temperature
of the flow just before each IT component (xfij in Figure 6.2) as the weighted average of the
temperatures of the incident flows under the simplifying assumptions of perfect flow mixing and
heat energy conservation. Since we also ignore recirculation effects, this implies that:
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• as for the first zone, the temperatures of the flows (just before hitting the first components)
is xin;

• as for the second zone, the temperatures of the flows (just before hitting the relative
components) is

xf2j =

∑3
k=1 λ2,k→jf1,in→k

(
xin + h1k

cp

(
xc1k − xin

) )

f2,j
(6.6)

where cp is the heat capacity of air at the constant pressure of 1 atmosphere, the quantity
xin+ h1k

cp

(
xc1k − xin

)
stands for the temperature of the air flow just after the k-th component

in the first zone, and where the multiplication of each term by λ2,k→jf1,in→k and the
division by f2,j are needed for normalization purposes. Notice here that the unknown
parameter h1k approximately captures the thermal convection effects happening on the
components in the first zone. More specifically, h1k subsumes in a scalar parameter the
heat capacity of the air1 and the heat capacity and thermal conductivity of the component
in the first zone and k-th row (cf. (6.8) and see the comments thereafter for more details);

• as for the third zone, similarly as before the temperatures of the flow reaching the fans is

xf32 =
1

u

3∑

k=1

λ3,k→outf2,j

(
xf2k +

h2k

cp

(
xc2k − xf2k

))
(6.7)

where the structure follows closely that one of (6.6).

6.4 Thermal components modelling
We model the dynamics of the generic j-th component in the generic i-th zone through the
classical Newton’s laws of thermodynamics, i.e.,

ẋcij = −hijfi,j
(
xcij − xfij

)

︸ ︷︷ ︸
convection

+
[
R(ij) ρij

] [xc

xin

]

︸ ︷︷ ︸
conduction

+ bijpij︸ ︷︷ ︸
el. power

(6.8)

with i = 1, 2, 3 the index of the zone in the server, j = 1, 2, 3 the component index, xc an
opportune column-vectorization of all the various scalars xcij , and R(ij) a row vector of con-
duction parameters with the same cardinality as xc. In (6.8) we highlight three specific main
contributions:

a convection term that expresses the rate at which heat is transferred between the electronic
component and the air flow crossing it. As said before, hij describes the average heat
transfer coefficient appearing in Newton’s law of cooling. Notice that the rate of this heat
exchange is, as expected, proportional to the mass of the air flow crossing the component
(i.e., fij), that in its turn is a function of the controllable input u;

a conduction term that expresses the rate at which heat is exchanged through conduction
among neighbouring components and potential parasitic losses to the environment through
the thermal resistance ρij between the component and a fictitious environmental node;

a self-heating term that expresses the rate at which electrical power flowing through the elec-
trical component is converted into heat.

1We note that the heat capacity at constant pressure of air is nearly constant in a neighbourhood of atmospheric
pressure.
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6.5 The complete model

For the electronic components in the first zone in Figure 6.1 the complete thermal model can be
obtained by inserting f1,j = f1,in→j = λ1,in→ju and xf1j = xin in (6.8), leading thus to

ẋc1j = −h1jλ1,in→ju
(
xc1j − xin)+R(1j)x

c + ρ1jx
in + b1jp1j

=: Ψ1j

(
xc, u,p, xin ; θ

) (6.9)

where θ is a vector collecting all the parameters defining the model.
As for the components in the second zone in Figure 6.1, instead, the model can be obtained

by inserting (6.3) and (6.6) in (6.8) plus simplifying the resulting equation, i.e.,

ẋc2j = −h2j

3∑

k=1

(
λ2,k→jλ1,in→ku

(
xc2j −

(
xin +

h1k

cp

(
xc1k − xin) )))

+R(2j)x
c + ρ2jx

in + b2jp2j

=: Ψ2j

(
xc, u,p, xin ; θ

)
.

(6.10)

As for the temperature at the air outlet, since there is no dynamics there, the equation is
simply given by (6.7), i.e., xout = xf32.

Assume then that the power consumption of the components is piecewise constant, and that
the controllable inputs u and xin are zero-order held. Discretizing either (6.9) or (6.10) using
Euler’s rule with a sample interval of length ∆ yields thus to

xcij(t+ 1) = xcij(t) + ∆Ψij

(
xc(t), u(t),p(t), xin(t) ; θ

)
(6.11)

for i = 1, 2 and j = 1, 2, 3, and where t is used to index the various time instants. For complete-
ness, we let the right-hand side of (6.7) to be equal to Ψ32

(
xc(t), u(t),p(t), xin(t) ; θ

)
, so that

we can complete the set of equations (6.11) with

xout(t) = Ψ32

(
xc(t), u(t),p(t), xin(t) ; θ

)
. (6.12)

6.6 Using CISSI for system identification purposes

Assume to have collected through the scripts described in Section 5 a dataset composed by
measurements of xc(t), u(t),p(t), xin(t), xout(t) for t = 1, . . . , N . With this information it is then
possible to estimate the parameters defining (6.11) and (6.12) through a plethora of different
system identification approaches.

Here we consider the standard strategy of estimating the unknown parameters as the ones
that maximize the predictive capabilities of the model assuming the dataset to be affected by
Gaussian measurement noises, and thus consider the various costs

Jij (θ) :=

N−1∑

t=1

(
xcij(t+ 1)− xcij(t)−∆Ψij (t ; θ)

)2

(6.13)

for i = 1, 2, 3 and j = 1, 2, 3 (notice that the notation for Ψij has been simplified, omitting
its dependence on xc(t), u(t),p(t), xin(t) for simplicity) that then leads to the Prediction Error
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Method (PEM) estimation strategy

θ∗ = arg min
θ∈Θ

∑

i,j

Jij (θ)

s.t.
∑3

j=1 λ1,in→j = 1
∑3

k=1 λ2,k→j = 1 j = 1, 2, 3
∑3

j=1 λ3,j→out = 1

(6.14)

with the hypothesis space Θ defined opportunely to guarantee the physical meaningfulness of
the various estimated parameters.

6.7 Experiments on real systems
The experimental part of this work has been performed on the experimental datacenter SICS-ICE
located in Luleå, Sweden [18]. The SICS-ICE datacenter runs a datacenter module dedicated
to an Open Rack V1 systems, housing OCP Facebook Server V2 Windmill servers, storages
and PDUs. As mentioned in Section 5, the experimental data has been gathered on this OCS
platform during February and March of 2017.

More precisely, the experiments have been performed running the stress module (cf. Fig-
ure 5.1) so that both the CPUs and the DIMMs followed a PWM signal with random durations
of the various periods (cf. Figure 6.3 for a typical excitation pattern). Importantly, during these
stress tests both the fans actuation signals u and the inlet temperature xin were controlled by
the native control systems in the datacenter (see Figure 6.4 for the values of these signals relative
to PWM patterns shown in Figure 6.3).
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Figure 6.3: Typical pattern of the activation levels of the CPUs and the DIMMs requested by
the stress module described in Section 5.3 and used in our system identification procedure.

As intuition states, following the procedure outlined in Section 6.6 we then get a different
set of parameters every time we collect a different dataset. Despite these numerical changes, we
report a specific set obtained using: i) a sampling period of 1 second; ii) a dataset comprising
samples for three hours (i.e., 10800 samples); iii) a system excitation pattern like the one in
Figure 6.3. We noticed that models obtained using training sets as above have practically
equivalent generalization capabilities on generic test sets. Moreover, increasing the number of
samples in the datasets (i.e., running longer training phases) leads to negligible improvements.

Importantly, in our settings we were endowed of servers not having temperature sensors for
the lower DIMM modules (i.e., it was not possible to collect xc13 and xc23). The following results
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Figure 6.4: The fans actuation signal u and the inlet temperature xin during the executions of
the PWM patterns shown in Figure 6.3.

thus correspond to a simplified server where the contributions from these modules were ignored
(i.e., where all the relative parameters λ’s have been set to zero).

The following Table 6.1 reports the suggested parameters for this reduced model. To com-
plement this table, our approach was to compute the approximation capabilities of the model
through computing the quantities

x̂cij(t+ 1) = x̂cij(t) + ∆Ψij

(
x̂c(t), u(t),p(t), xin(t) ; θ̂

)
(6.15)

initialized with x̂c(0) = xc(0). Figure 6.5 presents the evolutions of typical realizations of x̂c(t),
xc(t) and x̂c(t)−xc(t). In other words, this figure compares (6.11) against (6.15), i.e., compares
a typical evolution of the real system against the simulated one obtained through the identified
parameters θ̂ reported in Table 6.1.

Figure 6.5 implicitly say that the model had good approximation capabilities and were able
to reproduce the most important features of the true thermal process. We could nonetheless
draw the following conclusions:

1. RAM modules tend to be associated to smaller simulation errors than CPUs in absolute
values, but not in relative ones;

2. the parameters of the components relative to the first zone tend to be identified better
than the ones relative to the second zone. Potentially, this is due to the combination of
two factors: i) the dynamics of the air fluxes in the first zone tend to be simpler than the
ones in the second zone; this implies that identifying what happens in the second zone is
more complicated; ii) additional uncertainty may be due to the fact that the amount of
information used to identify the parameters in the second zone is smaller than the amount
of information used for the first zone: indeed in the latter we know xin, i.e., we have
measurements for the temperature of the flux hitting the elements in the first zone. For
the second zone these measurements are substituted by estimates, that are naturally more
uncertain than the measurements.

For completeness we report in Table 6.2 the normalized Mean Squared Errors (MSEs) of the
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errors plotted in Figure 6.5, i.e., the values of the quantities
∥∥x̂cij − xcij

∥∥2

∥∥xcij
∥∥2 (6.16)

for the test set plotted in Figure 6.5.

Parameter Value Parameter Value

h11 0.00000 R(12),11 0.00013
h12 0.00068 R(21),11 0.00000
h21 0.00000 R(22),11 0.00000
h22 0.00009 R(11),12 0.00493
h̃11 359.83539 R(21),12 0.00000
h̃12 906.39287 R(22),12 0.00150
h̃21 1459.44161 R(11),21 0.00000
h̃22 1459.44161 R(12),21 0.00019
λ11 0.99291 R(22),21 0.00000
λ12 0.00709 R(11),22 0.00001
λ211 0.47267 R(12),22 0.00001
λ212 0.06944 R(21),22 0.00234
λ221 0.52733 ρ11 0.00000
λ222 0.93056 ρ12 0.00000
λ31 0.50000 ρ21 0.00000
λ32 0.50000 ρ22 0.00001
b11 0.01167 b21 0.01246
b12 0.68022 b22 0.83668

Table 6.1: Summary of the parameters identified from real data and proposed to be used for
modelling the OCP servers under consideration.

Component indexes MSE

11 0.00141
12 0.00278
21 0.00343
22 0.01240

Table 6.2: Normalized MSEs of the errors plotted in Figure 6.5.
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Chapter 7

Minimum cost MPC fan control

The purpose of this chapter is to show how to use the models obtained in the thesis for practical
purposes, to complete and summarize the whole logical flow of improving the thermal cooling in
a data center by looking at it from a control-oriented perspective.

To exemplify how our models can be used to develop control schemes, we here provide an
example of how to build a MPC scheme. Notice that all ideas and problem formulations used in
this example are taken from another article, namely [36]. See the referenced article for a more
thorough discussion on the usage of MPC strategies in data centers applications.

The problem is then to control the fans by solving the on-the-fly MPC problem defined in
Equation 7.2, given the observations that: i) the rotational speeds of the fan are limited, so
that the control values u are constrained in the hyper-rectangle defined by the extreme points
umin, umax ∈ Rm

≥0; ii) the temperatures of the IT components shall be kept below some specified
safe limits, that implies that there exist state constraints of the kind xc � xc

max ∈ Rn
≥0; iii)

the concept of minimizing the cooling provisioning can be translated into minimizing the sum
of the power consumption of the individual fans while guaranteeing the temperatures of the IT
components to be within their limits. In first approximation the power necessary to produce a
given air mass flow is proportional to the product of the generated pressure drop and the mass
flow itself. For the fan at time t, the latter product is then proportional to the cubic power of
the control value u(t). Assume that the dynamics of the system can be written as

xc(t+ 1) = Ψ∆
(
xc(t), u(t),p(t), xin) (7.1)

with Ψ defined by the superposition of the various (6.11) for the various i and j. Then the
control problem can be stated as

min
u(0),...,u(T−1)

T−1∑

t=0

u(t)3

subject to:
xc(0) = xc

0

umin � u(t) � umax

xc(t+ 1) � xc
max

xc(t+ 1) = Ψ∆
(
xc(t), u(t),p(t), xin)

(7.2)

Notice that the electrical power consumption of the n IT components over the future horizon
is unknown, i.e., at each time t the values of p(t),p(t + 1), . . . ,p(t + H − 1) are unknown. It
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is thus possible to use the following heuristic: consider that the worst case temperature and
cost scenario in (7.2) occurs when the server runs at its full computational load, i.e., when
p(t) = pmax, t = 0, 1, . . . ,H−1. One may then use as a forecast of the future power consumption
p(t),p(t + 1), . . . the worst-case power consumption. Of course this strategy may lead to over-
cooling. Another strategy is to use, as forecasts of the future computational loads, the same
computational load that is currently seen (a.k.a. persistence forecaster).
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Chapter 8

Conclusions and future works

8.1 Conclusions
There are several control-oriented strategies using model-based approaches that can, at least
nominally, improve the thermal cooling in data centers with respect to non-model-based ones.
To be able to implement these strategies, though, one needs accurate descriptions of the dynamics
of the system. These models should thus capture how the various components inside a thermal
network affect each other while keeping the model sufficiently simple to be used for control
purposes.

A key part to obtain accurate control-oriented models is to obtain accurate data-driven
estimates of the unknown descriptive parameters. This, in its turn, implies the need for collecting
measurements from all the potential states in which the system can be. In other words, there
is the need for applying inputs to excite the system, in the sense that these inputs should steer
the system away from its natural equilibria. In data centers, this can be done by controlling
opportunely the IT loads of the various servers and then measuring the thermal status of these
servers.

This thesis meets the needs above by presenting a software strategy for remotely monitoring
and controlling OCP servers. It also provides a control-oriented linear model of the thermal
dynamics of the system and identifies this linear model from real data. Furthermore the thesis
provide a set of parameters to the community so that everybody, willing to do so can: i) construct
a simple simulator of the thermal behaviour of a server on which to perform tests in-silico; ii)
build opportune model-based control strategies for the cooling of servers in a data center.

The experiments performed in this thesis show a promising potential to obtain a good control-
oriented model of single servers that is able to reproduce the most important features of the true
thermal process. The results provide a basis for future researchers to further develop their
strategies.

8.2 Future works
Starting from the results presented above we foresee these distinct branches of future works:

Modeling, in the sense of improving or comparing the obtained models to ameliorate their
predictive capabilities. In more details, the identified thermal dynamics have good approx-
imation capabilities. They are however based on very simplified assumptions of linearity
and perfect air mixing (cf. the introduction of Section 6). It may be that using non-linear
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terms, or combining the model with results from opportune Computational Fluid Dynam-
ics (CFD) tools, may lead to improved results;

Monitoring, in the sense of continuously comparing the results provided by the model with the
measurements returned by the system to check if something is behaving in a non-expected
way. This would solve the practical problem of running sanity checks of the hardware and
instead signal faults when they occur;

Controlling, in the sense of building upon this thesis as a basis for model-based control strate-
gies, e.g., such as LQRs or MPCs approaches.

At higher hierarchical layers, there is also the need for improving the software to handle
multiple servers or a hole rack. More precisely the software suite CISSI can be improved:

1. in the stress module by advancing its capabilities of stressing the CPUs by making it able
to individually stress the DIMMs modules;

2. by implementing in, CISSI, a Graphical user interface (GUI) so to make it more user
friendly (also by means of a tool that can be installed and set-up automatically directly
from an application distribution repository);

3. by completing the control module by testing it on a OCS blade that support the FSC
software.

Notice that another approach that was considered when developing the control module was
to build a hardware-based controller of the server’s fans. This approach was however not pur-
sued because a software based solution would be more beneficial in an economical and resource
perspective. Unfortunately during the development of the software solution it was discovered
that the FSC was not supported by the OCS blade used in this project, so that, a-posteriori,
following the hardware solution might have been beneficial. The development of a hardware
based controller has therefore been started as a separate project within SICS.
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