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Abstract— In this paper we study the problem of estimating
the channel parameters for a generic wireless sensor network
(WSN) in a completely distributed manner, using consensus
algorithms. Specifically, we first propose a distributed strategy
to minimize the effects of unknown constant offsets in the
reading of the Radio Strength Signal Indicator (RSSI) due to
uncalibrated sensors. Then we show how the computation of the
optimal wireless channels parameters, which are the solution
of a global least-square optimization problem, can be obtained
with a consensus-based algorithm. The proposed algorithms
are general algorithms for sensor calibration and distributed
least-square parameter identification, and do not require any
knowledge on the global topology of the network nor the
total number of nodes. Finally, we apply these algorithms to
experimental data collected from an indoor WSN.

Index Terms— distributed computing, sensor calibration,
least-square estimation, parameter identification, consensus,
wireless sensor networks

I. INTRODUCTION

Wireless sensor networks (WSNs), i.e. networks of smart devices
that can sense, compute and exchange information with their
neighbors, are becoming very popular because of their promise
to revolutionize many engineering areas involving monitoring and
control [1]. Their strength resides in flexibility and scalability,
since the same hardware and software can be rapidly reconfigured
and adapted to manage rather different applications, from ambient
monitoring to people tracking, from industrial control to energy
management in buildings. However, many challenges ranging from
HW design, to real-time middleware prototyping, from data routing
protocols to distributed signal processing, still remain to be solved
before WSNs can become really ubiquitous and successful.

In this paper we address some of the modeling and algorithmic
aspects of one popular application for WSNs, namely localization
and target tracking, which has been widely studied in the last few
years. In fact, the wireless radio in each node of the WSN can
be used not only to communicate but also to measure the radio
signal strength associated with the received packet. Since the signal
strength is a function of location of the transmitter and the receiver,
it can be used to estimate their relative position. There are two main
approaches to target tracking: map-based and range-based. In the
map-based approach the position of the moving target is obtained by
finding the most likely location which matches the recorded signal
strength based on previously learned maps [2], [3]. This strategy
can be a good solution but it requires extensive work to learn the
maps. Differently, the range-based algorithms first try to estimate
relative distance based on simple models of the wireless channel
and then they estimate the position by triangulation, similarly to the
GPS system where the satellites correspond to the static nodes of
the WSN [4]. This approach requires a higher nodes density than
the map-based one, but it does not require extensive learning phase.
We focus on this last approach.
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Most of the previous work on range-based tracking proposed in
the literature assume that the wireless channel model parameters
are known or are identified off-line by collecting all data in
some centralized location [5]. Unfortunately, these parameters are
strongly dependent on the environment [6], [7], in particular indoor,
therefore it is desirable to identify them in-situ, possibly using
distributed algorithms suitable for the WSN node computational
resources. Moreover, the radio signal strength indicator provided by
the radio chips of the sensor nodes are not very precise mainly due
to uncalibrated offsets in the receiving nodes. As a consequence,
the estimated distance can be constantly biased in some nodes, thus
degrading tracking performance. Therefore, it is necessary to devise
some strategies to compensate these offsets [8].

The main contribution of this work is to propose the use of
consensus algorithms for automatic sensor calibration, and for
least–square–estimation of the optimal channel parameters. Con-
sensus algorithms are a very popular class of distributed algorithms
which has been successfully applied to coordinated robotics [9],
time synchronization [10], [11], and distributed estimation [12].
Although the algorithms we propose are applied to localization
and tracking for WSNs, they are very general since they can be
applied in any context where there is a need to calibrate sensors
and to solve a global least square identification problem. Another
very important contribution of this work is to mathematically model
the wireless channel and the communications protocols of typical
WSN based on experimental data, which is an aspect that it is
often overlooked, leading to unrealistic models. For example, due
to packet loss or time synchronization, it is rather problematic in
WSNs to enforce convergence to the mean of initial condition, i.e.
to enforce average consensus. Therefore, in our work we posed
particular care in exploring the tradeoffs between perfect average
consensus and randomized consensus.

The paper is organized as follows. In Section II we provide a
general mathematical model for the typical communication schemes
and the wireless channel model in WSNs. In Section III we
describe the experimental testbed used to collect data and, based
on these data, we find the appropriate parameters for the math-
ematical models given in Section II. In Section IV we propose
a consensus-based strategy for calibrating sensors with unknown
measurement offset readings. In Section V we show how the least
square parameter identification problem can be reframed as an
average consensus problem. In Section VI we apply the proposed
consensus-based least square algorithm for identifying the wireless
channel parameters under different communication strategies and
we highlight trade-offs between performance, speed of convergence
and computation complexity. Finally, in Section VII we summarize
the results and propose future research directions.

II. WSNS MODELING

A. Connectivity and Communications Models
We model a WSN as a set N = {1, . . . , N} of N nodes. Since
nodes communicate using a wireless channel, the transmission is
not reliable, i.e. there is a non–zero packet loss probability. We
model this communication unreliability with the connectivity matrix
C ∈ RN×N , where [C]ij = cij ∈ [0, 1] is the probability that
node j can successfully transmit a message to node i. Since the
wireless channel is approximately symmetric, we further assume
that C = CT and cii = 1, ∀i. We define the c-connectivity graph
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Gc = (N , Ec) associated to the connectivity matrix C as the graph
s.t. (i, j) ∈ Ec if and only if cij ≥ c. This graph is undirected
since the matrix C is symmetric. We also denote with V(i) =
{j | (i, j) ∈ E , i 6= j} the set of neighbors of node i and with the
degree d(i) = |V(i)| its cardinality.

The matrix C can be easily experimentally evaluated by letting
each node broadcast M packets at random instants (with retransmis-
sions times sufficiently big in order to avoid or reduce collisions).

In terms of communication there are three common strategies
adopted in WSNs: the broadcast communication where one node
i transmits a message to all its neighbors V(i), the asymmetric
gossip where a node i transmits a message to a specific node
j ∈ V(i), and the symmetric gossip where a node i transmits a
message to a specific node j ∈ V(i) and then waits to receive a
reply message from the same node. Moreover, associated to these
two communications strategies, there are two possible modalities:
sequential and randomized.

In the sequential broadcast each node in the network transmits
sequentially according to a deterministic sequence, and the time
interval τ between two transmissions is constant. Similarly, in
the sequential gossip each edge in the network is sequentially
allowed for communication and the intercommunication interval
τ is constant. In the randomized broadcast one node i turns on
with a uniform random probability 1

N
and the intercommunication

interval is an exponential random variable with mean τ . Similarly,
in the randomized gossip one node i turns on with a uniform
random probability 1

N
and selects one edge at random among all

its neighbors with uniform probability 1
d(i)

.
The WSN model we just presented is an effective mathematical

framework for the consensus algorithms, on which our work is
widely based on. For a detailed description of consensus algorithms
and their analysis we refer to [13]. Here we will just recall that a
consensus algorithm is characterized by a sequence of stochastic
matrices {P (t)}t∈N, which describe the update of the internal state
of the whole network when communication takes place. Depending
on the communication strategy the sequence can be deterministic
or stochastic, with P (t) being a random matrix drawn for a set
of possible matrices. The randomness in the matrix is tied to the
randomness in the choice of the communicating nodes.

In the broadcast strategy the consensus matrix PBi (“B ” stands
for broadcast) when a node i transmits is given by:

[PBi ]mn =


1 if m = n /∈ V(i);
1− w if m = n ∈ V(i);
w if m ∈ V(i), n = i;
0 otherwise.

where w ∈ (0, 1) is a tuning parameter and often w = 1
2

. In the
symmetric gossip, when the edge (i, j) is selected, the consensus
matrix PGij (the superscript “G ” stands for gossip) is given by:

[PGij ]mn =


1 if m = n 6= j and m = n 6= i;
1− w if m = n = j or m = n = i;
w if (m,n) = (i, j) or (m,n) = (j, i);
0 otherwise.

The consensus matrices defined above are based on the assumption
that there is no link failure during the communication. In a
c-connectivity graph, there is also an additional probability that the
transmission is not successful. In this case, the probability of failure
of transmission from node i to a node j ∈ V(i) is equal to 1− c.
When link failure happens in broadcast communication, the matrix
PBi needs to be modified with [PBi ]jj = 1, [PBi ]ji = 0. Instead,
when it happens in symmetric gossip, there is no communication
at all, and then no update is performed, i.e. PGij = I .

Based on the randomized communication modeling with link
failure probability, it results that the expected consensus matrix
PB = E[PB(t)] generated for the broadcast strategy is given by:

[P
B

]mn =

 1− c·w·d(n)
N

if m = n;
c·w
N

if m ∈ V(n);
0 otherwise.

Note that P
B

= (P
B

)T is symmetric and hence doubly stochastic,
although the matrices PBi are never symmetric. Moreover G

P
B =

Gc, i.e. the graph associated with the expected consensus matrix P
B

coincides with the underlying communication graph Gc. Consider
then a random consensus algorithm P (t), P (t)ii > 0 almost surely,
and call P̄ = E[P (t)]. A well established fact [13] is that if GP
is strongly connected then the algorithm achieves consensus w.p.
1. If moreover the matrices P (t) are all doubly stochastic then the
algorithm achieves average consensus w.p. 1. Therefore, if Gc is
strongly connected, then this implies that the randomized broadcast
guarantees probabilistic consensus. Although, it does not guarantee
average consensus for all possible realizations of PB(t). Even if the
gossip matrices are not doubly stochastic, the expected consensus
matrix P

B
is doubly stochastic, therefore the elements converge to

the average of the initial conditions in mean sense. One might also
wonder if P

B
provides some information about convergence rate

for the randomized strategy. In [13] there is an extensive analysis
of rates of convergence and mean square analysis for the dispersion
of final consensus value w.r.t. the average of initial conditions.
The main message being that the second largest eigenvalue of
P
B

provides only an optimistic rate of convergence, and that the
dispersion of the final consensus value from the average of the
initial conditions decreases as the number of nodes increases. As
we will see in Section VI, the parameter w can be tuned to obtain a
final consensus value closer to the average of the initial conditions,
at the price of slower convergence rate.

Similarly, the expected consensus matrix P
G

for the symmetric
gossip is given by:

[P
G

]mn=


1−

∑
i∈V(n)

2c·w
N(d(n)+d(i))

if m = n;
2c·w

N(d(m)+d(n))
if (m,n)∈Ec, m 6= n;

0 otherwise.

Obviously P
G

= (P
G

)T since all the gossip matrices PGij from
which the distribution is drawn are symmetric by construction.
Similarly to the broadcast, we have G

P
G = Gc. Therefore, if

Gc is strongly connected, then the randomized symmetric gossip
guarantees probabilistic average consensus. Compared to the ran-
domized broadcast, the randomized symmetric gossip guarantees
average consensus for all realizations, but it is more expensive from
a communication point of view. Indeed, at least two packets with
reception acknowledge need to be exchanged at every step of the
consensus iteration, while for the broadcast only one is needed (with
no acknowledge). Furthermore, with the symmetric gossip just two
nodes receive informations while with the broadcast strategy all the
neighbor nodes of the broadcaster do. The rate of converge is then
much slower, as can also be guessed noting that the off-diagonal
elements of the matrix P

G
are smaller than their counterparts in

P
B
, i.e. there is slower information propagation. We will discuss

these differences in more detail in Section VI.

B. Wireless Channel Model
We model the behavior of the wireless channel between two nodes
in terms of received power Prx (in dBm) as follows:

P ijrx = P jtx + rj + fpl(‖xi − xj‖) + fsf (xi,xj)
+fa(xi,xj) + vff (t) + oi

(1)

where P jtx (in dBm) is the transmitted power, i and j are the
receiver and the transmitter nodes, xi,xj ∈ R3 are their spatial
positions and t is the time when the communication occurs.
rj is the transmission offset between the nominal and the

effectively transmitted power (due to fabrication mismatches; it is
assumed to be constant in time). fpl(·) represents the generic Path
Loss effect, and it is modeled to be (see [6]):

fpl(‖xi − xj‖) = β − 10γ log10 (‖xi − xj‖) (2)



Fig. 1. Picture of the experimental testbed room: Aula Magna “A.
Lepschy”, Dept. of Information Engineering, University of Padova.

where β represents the radio receiver gain at a nominal distance
of d = 1m, and γ is the loss factor. fsf (·) models the Shadow
Fading and other slow fading components. It is assumed (see [14])
to be symmetric (i.e. fsf (xi,xj) = fsf (xj ,xi)) and Gaussian
with a spatial correlation dependent on the difference between
the distances of the various points. fa(·) represents the channel
asymmetry factor. It is due to non symmetric reflections, and we
model it to be a Gaussian r.v. with zero-mean and covariance
Ex[f2

a (xi,xj)] = σ2
a. vff (·) represents the fast fading component

that can be modeled (see [6]) as a white temporal noise with
zero-mean and covariance Et[v2

ff (t)] = σ2
ff . oi(·) represents the

measured received strength offset of the receiving node due to
fabrication mismatches in the radio chip. For example, in the case
of the nodes used in our experimental testbed the RSSI measurer
has a tolerance of ±6dB (see [15]).

The parameters of Eqn. (1) depend on the physical environment
where the WSN is placed and on the sensors under consideration,
therefore they are not known in advance but they need to be
estimated on-site. In the next section we describe the experimental
testbed used to collect experimental data from which we will
estimate the wireless channel parameters.

III. EXPERIMENTAL TESTBED

The experimental data used in the simulations consist in a series of
measurements relative to packet sendings and receptions performed
by a net of 25 Tmote-Sky [16] nodes equipped with the Chipcon
CC2420 RF Transceiver [15]. These nodes were randomly placed
inside a conference room of 15m× 10m at about 50cm from the
ground. The relative position of the nodes is shown in Figure 2.

Each node implemented the randomized broadcast communica-
tion using the same transmission power Ptx and intercommunica-
tion interval τ = 15s (corresponding to the expected time between
2 transmissions of the same node, sufficiently high in order to
consider as rare a packet collision). Each node sent a fixed number
of packets M = 500, each one including the sender node ID, and
also stored a table with the total number of messages received from
their neighbors and the corresponding RSSI measures P ijrx.

These tables were then collected for off-line data processing. In
particular, from these data we constructed the connectivity matrix
C. Given the short distance among nodes, each node received at
least one packet from any other node, however the empirical packet
reception probability was different. In fact, the c-connectivity graph
Gc obtained for c = 0.70 (i.e. removing links with an empirical
packet loss probability greater than 30%) is not the complete graph,
even if it is still strongly connected, as shown in Figure 2.

In the following we explain how it is possible to estimate or
measure the various parameters of the wireless channel model (1)
using the various P ijrx(t) collected from the nodes.

The transmission power offsets rj of Eqn. (1) can be directly
measured substituting the antenna of the nodes with a probe
connected to a power measurer. Measurements made on the set of
the nodes used for the experimental data shown that these offsets
are negligible (see [17]), so in the following we will ignore this
kind of offsets, i.e. we set ri = 0, ∀i.

Then for every link (i, j) ∈ E in the connectivity
graph, we compute the empirical mean of the received power
P̄ ijrx = 1

Mij

∑
t P

ij
rx(t), and the empirical variance (σ̂ijff )2 =

1
Mij

∑
t(P

ij
rx(t) − P̄ ijrx)2, where Mij is the total number of mes-

sages received. The empirical variance around each link is due to
fast fading only, thus, the estimate for the fast fading variance is:
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Fig. 2. Network topology and node displacement of experimental testbed.
Only edges with empirical packet loss smaller than 25% are displayed.

σ2
ff =

1

|E|
∑

(i,j)∈E

(σijff )2.

The measurements P̄ ijrx include the effects of path loss, shadow-
fading, channel asymmetry and reception offsets. We can try to
identify first the contribution of the channel asymmetry and recep-
tion offset by noting that the path loss and the shadow fading are
symmetric, i.e. ∆P̄ ijrx = P̄ ijrx−P̄ jirx = f ija −f jia +oi−oj , where for
ease of notation f ija = fa(xi,xj). We can also remove the effects
of the offsets by noting that ∆P̄ ijkrx = ∆P̄ ijrx + ∆P̄ jkrx + ∆P̄ kirx =
f ija − f jia + f jka − fkja + fkia − f ika . We experimentally observed
that ∆P̄ ijkrx has approximately zero-mean over the set of all the
independent feasible cycles (i, j, k), set that we denote with C.
Since the nodes are sufficiently far from each other and we have
experimentally observed that the shadow fading correlation distance
D ≈ 10cm, all f ija can be considered uncorrelated, therefore we
can compute the covariance of the channel asymmetry as:

σ2
a =

1

6|C|
∑

(i,j,k)∈C

(∆P̄ ijkrx )2.

If we assume also independence between channel asymmetry com-
ponents f ija and the offsets oi, we can estimate the offset variance
σ2
o from the following formula:

2σ2
o + 2σ2

a =
1

|E|
∑

(i,j)∈E

(∆P̄ ijrx)2.

Finally, we can estimate the parameters θ = [β γ]T of the path
loss channel. As it will be shown in the next section, it is possible
to calibrate sensors by adding a compensating offset ôi such that
oi + ôi = α for all nodes. Averaging all sensor readings received
from the same node removes the effect of fast-fading, therefore the
calibrated average received power P̂ ijrx = P̄ ijrx + ôi is given by:

P̂ ijrx = Ptx + β − 10γ log(dij) + f ijsf + f ija + α

where f ijsf = fsf (xi,xj). Since β needs to be estimated and α is
constant, we can assume w.l.o.g. that α = 0, since its contribution
will be included by the estimated β. Shadow fading f ijsf and
channel asymmetry f ija are unknown but they can be assumed to
be independent zero-mean disturbances, therefore it is possible to
find the best mean square estimate of the unknown parameter as
θ̂LS = (ATA)−1AT b, where A = [a1 . . . aM ]T , b = [b1 . . . bM ],
and M = |E|. The generic elements of matrix A and vector b
are am = [1 − 10log(dij)]

T and bm = (P̂ ijrx − Ptx), where
dij = ‖xi−xj‖ and P̂ ijrx are known. Figure 3 shows the identified
path-loss model and all collected pairs (P̂ ijrx, dij). The residues
obtained from the path-loss model correspond to the variance due
to the shadow fading and channel asymmetry, i.e.:

σ2
a + σ2

sf =
1

|E| ‖Aθ̂LS − b‖
2.
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Fig. 3. Estimated path-loss model for the wireless channel, using the
standard centralized least square estimate. The line represents the path-loss
function, while the dots are the collected measures.

Fig. 4. Experiment inside a basketball court showing the effects of reception
offsets in WSN tracking when nodes are swapped. True trajectory in both
panels is the court cenerline. Courtesy of ST Microelectronics [18].

Table I summarizes the estimated parameters of the model (1) based
on the experimental data collected.

β [dBm] -45.7 γ [dBm] 1.76
σsf [dBm] 3.78 σa [dBm] 0.16
σff [dBm] 1.31 σo [dBm] 1.01
ri [dBm] ≈0

TABLE I
ESTIMATED CHANNELS PARAMETERS FOR THE MODEL (1)

IV. DISTRIBUTED SENSORS CALIBRATION

As shown in the previous section, experimental evidence indicates
that sensor offsets oi in the nodes are not negligible and can
be substantially large for some node (up to 6dB). The effect of
this offset is to bias the estimate of the distance between two
nodes, which is particularly harmful in tracking application. Since
unknown location of a moving target is obtained by triangulating its
position from three or more static nodes whose position is known,
the estimated position will be closer to the node with high offset
oi than it should be. This is particularly clear in Figure 4, which
reports a tracking experiment where the moving node to be tracked
is following a straight line (the basketball court centerline) between
two rows of nodes of a WSN. However, its estimated trajectory is
not straight but it is bent to the left (left panel). When the two central
nodes on one side are swapped with the other side, the estimated
trajectory is now bent to the right, thus clearly showing a problem
due to uncalibrated offsets. Here we present a fully distributed and
simple strategy which aims at estimating and removing the offsets
oi from each node, and we show its benefits on experimental data.

A. Offset calibration algorithm
Ideally, we would like to add to the reading of received power
a compensation offset ôi such that oi + ôi = 0, and then use
the compensated received power P̂ ijrx = P ijrx + ôi to estimate the
relative distance. However, we do not have the possibility to directly

measure oi of each node, nonetheless we would like to at least
partially compensate it. More precisely, we would like to have

oi + ôi = α, α ≈ 0

for all nodes. If α 6= 0 such strategy does not compensate the
offset, but this is not critical, as the nonzero offset reached after the
calibration phase is completely absorbed during the identification of
the path loss model parameter β. We now show how this strategy
can be casted as a consensus problem. Let us consider a static
WSN where the nodes are at fixed positions and transmit at the
same power Ptx. Let yij be the average received signal strength by
node i from node j:

P̄ ijrx =
1

T

T∑
t=1

P ijrx (Ptx,xi,xj , i, j, t)

= fij + oi + faij + rj +
1

T

T∑
t=1

vff (t) ≈ fij + oi (3)

where P ijrx is modeled as in Eqn. (1), fij = Ptx + fpl(‖xj −
xi‖) + fsf (xj ,xi), and faij = fa(xi,xj). The approximation
is based on parameters in Table I which imply that |faij + rj +
1
T

∑T
t=1 vff (t)| � |oi| for T sufficiently large, being vff (t) white

noise. Note that fij is symmetric, i.e. fij = fji. The next theorem
shows how the problem of compensating the offset oi can be casted
as a consensus problem:

Theorem 1: Let us consider the c-connectivity graph Gc =
(N , Ec) of a WSN, and let P (t) ∼ Gc a sequence of stochastic
matrices that solves the (probabilistic) consensus problem. Assume
that yij = fij + oi where fij = fji. Consider the following
algorithm:

ôi(0) = 0, i ∈ N = {1, . . . , N} (4)

ôi(t+ 1) = ôi(t) +
∑
j∈V(i)

pij(t)
(
yji − yij + ôj(t)− ôi(t)

)
(5)

where pij(t) = [P (t)]ij . Then limt→∞ oi + ôi(t) = α where α ∈
[mini(oi),maxi(oi)]. If in addition P (t) are doubly stochastic,
then α = 1

N

∑
i∈N oi.

Proof: Let us define the new variables xi(t) = oi + ôi(t).
From this definition it follows that xi(0) = oi + ôi(0) = oi.
Moreover, Eqn. (5) can be rewritten as follows:

ôi(t+ 1) + oi = ôi(t) + oi +
∑
j∈V(i) pij(t)·

·
(
fji + oj − fij − oi + ôj(t)− ôi(t)

)
xi(t+ 1) = xi(t) +

∑
j∈V(i)

pij(t)
(
xj(t)− xi(t)

)
=

(
1−

∑
j∈V(i)

pij(t)
)
xi(t) +

∑
j∈V(i)

pij(t)xj(t)

= pii(t)xi(t) +
∑
j∈V(i)

pij(t)xj(t)

The last equation can be written in compact form as x(t + 1) =
P (t)x(t). Since P (t) solves the (probabilistic) consensus problem,
then limt→∞ xi(t) = α. The claim that α ∈ [mini(oi),maxi(oi)]
follows from the property that if P is a stochastic matrix, then
max(Px) ≤ maxi(x) and min(Px) ≥ min(x) [19].
The previous theorem indicates how we can compensate the un-
known offsets oi. Also, it is not necessary to know the exact
value of fij since it is symmetric. In practice the assumption
P̄ ijrx = yij = fij + oi is not exact, resulting in an oscillating
steady state behavior in the consensus algorithm.

We might wonder whether there is an appropriate choice of P (t)
to have α ≈ 0, which is the ideal solution. We can argue that
the offsets oi of the radio chips are on average null, have some
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Fig. 5. Network topology and node displacement for c-connectivity graph
for c = 0.1. Nodes’ grey intensity represents the estimated offset ôi after
calibration. Black and grey edges represent the edges used for training and
validation data sets, respectively.

dispersion due to imperfect fabrication and are independent, i.e.
E[oi] = µo = 0, E[o2i ] = σ2

o , and E[oioj ] = E[oi]E[oj ] = 0. It
is well known that the best estimate of the mean µo given a set
of offsets is E[µo | o1, . . . , oN ] = 1

N

∑
i∈N oi = α∗ which has

the property that E[α∗] = µo = 0 and E[(α∗)2] =
σ2
o
N

, i.e. the
average consensus is the strategy for which α is closer to zero in
mean square sense and the error becomes smaller and smaller as
the number of nodes N increases.

Although the best choice for the compensating the offsets oi is
to choose P (t) which are doubly stochastic, this can be difficult
to enforce in a WSN since it requires synchronization among the
nodes and compensation for packet loss.

B. Simulations on experimental data
The proposed algorithm for distributed offset calibration has been
tested off–line on the same set of data collected during the ex-
perimental setup described in Section III. Here we considered the
c-connectivity graph Gc with c = 0.1, i.e. we considered all links
which received at least 10% of the packets. Differently from the
graph with c = 0.75 shown in Figure 2, the resulting graph with
c = 0.1 reported in Figure 5 is complete, i.e. all edges exist. The set
of all the edges has been divided into two subsets: the first subset of
edges (60% of the total, in black in Figure 5) has been used for the
estimation of the node offsets. Therefore the proposed distributed
sensor calibration algorithm has been executed on the data collected
on these edges. In particular, the calibration algorithm was set with
yij = P̄ ijrx corresponding to these edges. The second subset (40%
of the total, in grey in Figure 5) has been used in a second stage
for validation purposes: we evaluated the asymmetric difference
(P̄ ij + ôi)− (P̄ ji + ôj) on the data collected on this subset. This
approach allows us to both evaluate the effect of the offset removal,
and to validate at the same time the model we proposed.

We simulated the randomized broadcast consensus on the graph
Gc using the experimental data and including i.i.d. packet loss
failure set by the connectivity matrix C. Figure 6 shows the
behavior of the consensus algorithm for a specific realization with
two different values of the weight parameter in matrices P (t).
The steady state compensation offsets ôi(∞) have been reported in
Figure 5 by coloring of the nodes with a gray intensity proportional
to ôi(∞). Since the true node offsets oi are unknown it is not
possible to plot the behavior of xi(t) = oi + ôi(t) which are
the variables that should converge to a common value, however
the fact that all ôi converge to a steady state is an indication
of correct functioning. It is also interesting to note the effect
of unmodeled measurement noise arising from having neglected
channel asymmetry and fast fading. In fact for larger w, i.e. for
larger weight on the off-diagonal terms in the consensus matrix,
the oscillation at steady state is not negligible, i.e. a large w tends
to amplify noise. On the other hand, a small w leads to slower rate
of convergence, thus indicating a tradeoff between convergence rate
and noise sensitivity. Note also that the magnitude of steady state
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Fig. 6. Offset estimation ôi for each node of the WSN using randomized
broadcast consensus for different values of the consensus weight w.
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Fig. 7. Asymmetric error distribution before (|P̄ ijrx−P̄ jirx|, white) and after
(|P̄ ijrx+ ôi− P̄ jirx− ôj |, black) the distributed sensor calibration algorithm.

values of ôi is consistent with the a-priori dispersion indicated by
the standard deviation σo reported in Table I.

In order to evaluate the effectiveness of the offset calibration, we
tested the channel asymmetry after calibration on a validation set
different from the set used for computing the offsets ôi. The results
of this second stage has been plotted in Figure 7. The white bars
represent the distribution of |P̄ ij − P̄ ji| on the validation edges,
before the distributed sensor calibration algorithm is executed. The
black bars, instead, show the distribution of |(P̄ ij+ôi)−(P̄ ji+ôj)|
after the algorithm has run. The offset reduction clearly appears. Af-
ter the calibration, 56% of the validation edges have an asymmetric
difference smaller than 0.5dBm (it was 24% before calibration),
while 88% of them has an absolute error smaller than 1dBm (it
was 50% before calibration). After the offset removal algorithm,
almost all the measurements (99.4% of them) are affected by an
asymmetric error smaller than 2dBm.

The importance of offset removal in the received power measure-
ments is evident when these measurements are used for wireless–
based localization. In fact, relative distance is estimated by inverting
the path-loss function based on the calibrated measured power P̂ ijrx,

i.e. d̂ij = 10
P
j
tx−P̂

ij
rx+β

10γ = 10
P
j
tx−P

ij
rx+ôi+β
10γ . If the calibration

offset ôi is not included in the previous formula, there can be
measurements errors up to 6dBm due to uncalibrated offsets, as
Figure 7 suggests. In fact, a systematic calibration error of 6dBm
corresponds to an uncertainty range from 0.9m to 4.4m when
estimating the relative position of a node at 2m, and to a practically
useless estimation when the node is farther. An error of 1dBm, on
the other hand, corresponds to an uncertainty of only 28cm for a
2m-long link, and of only 1.4m when the node is at 10m.

There is another practical advantage of running the distributed
sensor calibration algorithm before using the network of anchor
nodes for localization. If a reception offset is estimated for each
node of the network, then there is no need of a bidirectional
communication between the anchor nodes and the node that has
to be localized. Indeed, there is no need of data trasmission at
all between the mobile node and the anchor nodes: it is enough



that the mobile node regularly broadcasts toward the rest of the
network, without establishing any kind of data connection, an then
the network itself estimates its location.

V. DISTRIBUTED LEAST SQUARE ESTIMATION WITH
CONSENSUS

In this section we show how to cast the Least Square Parameter
Identification (LSPI) problem as an average consensus problem.
We begin introducing some basic results on consensus algorithms.

Theorem 2: Let Gc = (N , Ec) be the c-connectivity graph
associated to a communication network with N nodes, i.e. N =
|N |, and let zi ∈ Rp, i = 1, . . . , N the data available to i-th node.
Suppose that ξ ∈ Rr can be defined as follows:

ξ = f
( 1

N

∑
i∈N

gi(zi)
)

(6)

where gi : Rp → Rq are generic functions, and f : Rq → Rr
is continuous. Suppose that P (t) are stochastic matrices consistent
with the graph, i.e. P (t) ∼ Gc, ∀t, which solve the (probabilistic)
average consensus problem. Let:

xi(0) = gi(zi), ∀i ∈ N (7)

xi(t+ 1) = pii(t)xi(t) +
∑
j∈V(i)

pij(t)xj(t) (8)

ηi(t) = f(xi(t)) (9)

where pij(t) = [P (t)]ij . Then we have:

lim
t→∞

ηi(t) = ξ, ∀i ∈ N .
Proof: The proof is constructive. If P (t) solves the av-

erage consensus problem, then limt→∞
∏t−1
τ=0 P (τ) = 1

N
11T ,

where 1 = [1 1 . . . 1]T ∈ RN . If we define the matrix
X = [x1 x2 . . . xN ]T ∈ RN×q , then Eqn. (8) can be written
in compact form as X(t + 1) = P (t)X(t), from which it
follows that limt→∞X(t) = 1

N
11TX(0), i.e. limt→∞ xi(t) =

1
N

∑
i∈N xi(0) = 1

N

∑
i∈N g(zi). Using the continuity of the

function f , we can claim that limt→∞ ηi(t) = ξ, ∀i ∈ N .
This theorem simply states that if the variable we need to compute
is a function of the mean of some transformation of the data, then
it can be computed using distributed average consensus algorithms.
An analogous statement of this theorem has been proposed in the
context of continuous-time consensus problems by Bauso et al. [20]
and later generalized by Cortes [21], known as χ-consensus. Here
we proposed a discrete time counterpart which is less demanding
in terms of conditions on the functions f and g. In general, the key
point is to find the appropriate functions g and f which solve the
original problem, being the theorem a straightforward application
of consensus theory. Many problems cannot be quite written as
in Eqn. (6), but in the more general form ξ = f

(∑
i∈N g(zi)

)
.

The previous theorem can still be used if N is known, with the
simple change ηi = f(Nxi) while the rest of the algorithm is
left unchanged. One might wonder if it is possible to compute N
distributively, if its value is not known in advance. The following
theorem provides a partial answer to this question.

Theorem 3: Let Gc = (N , Ec) the c-connectivity graph associ-
ated to a communication network with N nodes, i.e. N = |N |,
and assume that there is a special node k ∈ N , referred as graph
leader. Without loss of generality, we set k = 1. Suppose that P (t)
are stochastic matrices consistent with the graph, i.e. P (t) ∼ Gc, ∀t,
which solve the (probabilistic) average consensus problem. Let:

x1(0) = 1,

xi(0) = 0, ∀i = 2, . . . , N

xi(t+ 1) = pii(t)xi(t) +
∑
j∈V(i)

pij(t)xj(t), ∀i ∈ N

ηi(t) =
1

xi(t)

where pij(t) = [P (t)]ij . Then we have:

lim
t→∞

ηi(t) = N, ∀i ∈ N .
Proof: The proof is analogous to Theorem 2. By construction

it is easy to see that limt→∞ xi = 1
N

∑N
i=1 xi(0) = 1

N
.

This theorem shows that it is possible to compute the number of
nodes using an average consensus algorithm as long as a leader is
elected. As a consequence, the algorithm is not truly distributed, as
not all the nodes perform the same actions, being the initialization
different. Nonetheless, the problem of leader election is a very well
studied problem and efficient algorithms exist [22], therefore a fully
distributed algorithm would consist in two stages: a leader election
stage and an average consensus stage.

Now we can solve the LSPI problem using consensus algorithms.
Suppose we have a data set D = {(am, bm),m = 1, . . . ,M}
where am ∈ R` and bm ∈ R, generated according to the model
aTmθ = bm + vm, where θ ∈ R` is the parameter vector to be
estimated and vm ∈ R is an unknown error. Let us define the matrix
A ∈ RM×`, A = [a1 . . . aM ]T and the vectors b, v ∈ RM , b =
[b1 . . . bM ]T , v = [v1 . . . vM ]T . The least square identification of
the parameter θ is defined as follows:

θ̂LS = arg min
θ
‖v‖ = arg min

θ
‖Aθ − b‖ = A†b

where A† represents the pseudo-inverse of A. We now present
a theorem showing how the centralized least square parameter
identification can be performed over graphs.

Theorem 4: Let Gc = (N , Ec) be the c-connectivity graph
associated to a communication network with N nodes, i.e. N =
|N |, and let D(i) = {(am, bm)} the partition of the whole data
set D available to i-th node, satisfying D(i) ∩ D(j) = ∅, i 6= j,
∪i∈ND(i) = D, |D(i)| = Mi and |D| = M =

∑
i∈N Mi.

Suppose that P (t) are stochastic matrices consistent with the
graph, i.e. P (t) ∼ Gc, ∀t, which solve the (probabilistic) average
consensus problem. Let xAi ∈ R`×` and xbi ∈ R` for i = 1, . . . , N
and consider the following algorithm:

xAi (0) =
∑

m∈D(i)

ama
T
m, ∀i ∈ N (10)

xbi (0) =
∑

m∈D(i)

ambm (11)

xki (t+ 1) = pii(t)x
k
i (t)+

∑
j∈V(i)

pij(t)x
k
j (t), k = A, b (12)

ηi(t) =
(
xAi (t)

)†
xbi (t) (13)

where pij(t) = [P (t)]ij . Then we have:

lim
t→∞

ηi(t) = θ̂LS , ∀i ∈ N .
Proof: Let us define the matrix S = ATA =∑M

i=1 aia
T
i and the vector q = AT b =

∑M
i=1 aibi, therefore

θ̂LS = S†q. By construction we have that limt→∞ x
A
i (t) =

1
N

∑N
i=1 x

A
i (0) = 1

N

∑M
i=1 aia

T
i = 1

N
S and similarly

limt→∞ x
b
i (t) = 1

N

∑N
i=1 x

b
i (0) = 1

N

∑M
i=1 aibi = 1

N
q. By

continuity limt→∞ ηi(t) = ( 1
N
S)† 1

N
q = S†q = θ̂LS .

This theorem shows that LSPI can be computed as the solution
of a distributed algorithm which does not require the knowledge
of the total number of nodes N or the total number of data M
available. Moreover, the data can be arbitrarily partitioned among
nodes. Since the matrix S = ATA is symmetric it is not necessary
to compute all its `2 entries, therefore the xAi can be reduced to a
vector of size (`2 + `)/2. Nonetheless the complexity in terms of
communication, i.e. the dimension of the vector of parameters to
be averaged, is O(`2) which can be impractical if the dimension `
of the unknown parameter θ is large.



VI. SIMULATIONS

In this section we apply the results presented in the previous section
to distributively identify the unknown path-loss channel parameters
(β, γ) using consensus algorithms and testing different communica-
tion strategies. As mentioned above, these two parameters are used
in localization algorithms in order to estimate relative distances
between nodes. Therefore, it is critical to be able to identify the
path-loss parameters in a distributed way, robustly to node failure,
with minimal exchange of data and low computational power, and
without a central unit. It has to be noted that an accurate a-priori
model for power loss in different indoor environments is almost
unavailable (for example γ can vary from 1 to 6 according to the
room sizes, the amount of furniture and people and the number
of walls that the signal has to cross in average). Furthermore, the
same environment can present a hourly or daily variation of these
parameters due to the periodic presence of people populating the
indoor spaces [7]. Distributed algorithms with these features can be
used to periodically or adaptively identify the channel parameters
in a changing environment.

Based on these considerations, the focus of this section is to com-
pare the performances of three different communication strategies
which have different characteristics in terms of rate of convergence,
communication complexity and parameter identification accuracy.
The first and the second strategies are based on the implementation
of the distributed LSPI described in Section V using the randomized
broadcast and the randomized symmetric gossip, respectively. The
third strategy performs the randomized symmetric gossip consensus
on local estimates of the channel parameters vector θ rather than
on the least-square sufficient statistics xA, xb of Theorem 4. Each
strategy has its own advantages. In fact, the randomized symmetric
gossip guarantees average consensus, therefore, when applied to
xA and xb, it is guaranteed to provide the best identification
accuracy since it satisfies the hypotheses of Theorem 4. Randomized
broadcast does not guarantee average consensus, and consequently
the best performance, however it is very easy to be implemented
since it needs no coordination between nodes. Moreover it is
“faster” than the symmetric gossip since, on average, there are d(i)
updates per iteration compared with 2 for the symmetric gossip.
Finally, the strategy based on the average consensus of the local
least-square estimates does not guarantee optimal performance nor
best speed of convergence, however the number of parameters to
be exchanged among nodes is equal to the size ` of the parameter
vector θ, while for the first two strategies it is proportional to `2.

We now describe in detail how the simulations are obtained.
We considered the c-connectivity graph Gc = (N , Ec) shown
in Figure 2. The data set D(i) available to each node i is
given by D(i) = {(P̄ ijrx, dij) | j ∈ V(i)}, i.e. all the averaged
received power measurements from each neighbor coupled with
the corresponding relative distances (note that the distances are
assumed to be known). The data set of all measurements is indicated
with D = ∪i∈ND(i). We also assume that the offset calibration
procedure of Section IV has been performed in order to obtain the
compensating offsets ôi, and that the effect of fast-fading can be
neglected since the measurements have been averaged over a large
number of packets. Therefore, as shown at the end of Section III,
the channel parameters θ = [β γ]T can be identified using a
least square minimization by setting am = [1 − 10 log(dij)],
bm = P̄ ijrx − Ptx + ôi, where m = 1, . . . ,M indicates a generic
data element, and M = |D| = |Ec|. Using the same terminology
of Theorem 4 we indicate with θ̂LS the centralized least-square
estimate using the complete data set D. We also indicate with θ̂iLS
the least-square estimate performed by the i-th node using only its
data set D(i), which is the best estimate a node can have without
communicating with the others. The performance assessment (in
terms of identification accuracy) is based on the residues of the
estimate θ̂ given by:

J(θ̂) = ‖Aθ̂ − b‖.
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Fig. 8. Convergence of parameter estimates βi, γi using randomized
broadcast least-square consensus and consensus weight w = 0.5. The
dashed lines are the centralized least squares estimates β̂LS , α̂LS .

Note that A and b are constructed using the whole data set,
and therefore J(θ̂) represents the global residual. Since θ̂LS =
arg minθ J(θ̂), it is obvious that J(θ̂LS) ≤ J(θ̂iLS), ∀i from
which it follows J(θ̂LS) ≤ 1

N

∑
i∈N J(θ̂iLS). Being ηi(0) =

θ̂iLS , if all the P (t)’s are doubly stochastic then from Theo-
rem 4 it follows that limt→∞ J(ηi(t)) = J(θ̂LS), ∀i, and so
limt→∞

1
N

∑
i∈N J(ηi(t)) = J(θ̂LS).

In the first simulation, we tested the randomized broadcast
least-square strategy using the connectivity matrix C defined in
Section II-A for the link failure probabilities. Figure 8 shows the
identified channel parameters of all nodes ηi(t) = [β̂i(t) γ̂i(t)]

T as
a function of the number of iterations for a typical realization of the
system (thought as the stochastic process of information exchange).
It can be seen that the identified parameters of all nodes converge
to a common value, however, since broadcast does not guarantee
average consensus, identified parameters do not necessarily coincide
with the optimal estimate θ̂LS . It is also interesting to note that
most of the nodes have already good estimates of the parameters
without communicating with the others, since most of them have
lots of links and there are only two parameters to estimate. However,
there are some nodes which have poor initial estimates, especially
the ones on the perimeter of the graph and which have few
links. Nonetheless, thanks to the consensus algorithm, they rapidly
converge to a good value.

In the second set of simulations, shown in Figure 9, we com-
pared the rate of convergence and the steady state identification
error for the three different strategies described above. More
precisely, we compared the average estimation residual J̄(k) =
1
N

∑
i∈N J(θ̂i(k)) of all nodes as a function of iteration error. To

reduce the randomness due to the choice of a particular realization
of {P (t)}t∈N we actually depicted E[J̄(k)], approximately com-
puted as the average of 50 independent extractions of the sequence
{P (t)}t∈N. In Table II it is reported also the steady state dispersion
of J̄(k) around its mean value, obtained by recording the maximum
and the minimum value of J̄(k) over the 50 extractions. In the
bottom line the residual of the centralized optimal estimate is also
reported for comparison.

Initially we tested the randomized broadcast least square algo-
rithm for two different weights w. As already mentioned, larger w
leads to faster convergence rates, however it also leads, in mean,
to a larger steady state identification error. We also have that the
steady state value is strongly realization dependent, as it can be
noticed from to the large dispersion interval. This is due to the
fact the first communications tend to bias the final value toward
the initial condition of that node. Differently, if w is reduced,
then this bias is smoothed out and E[J̄(k)] end up closer to exact
average consensus. Also the dispersion of the single realization with
respect to E[J̄(k)] reduces. Moreover it has been proved in [13]
that the distance of E[J̄(k)] form the average consensus decreases
by increasing the number of nodes in the network, thus suggesting
fast convergence rate with negligible performance degradation as
compared, for example, to random symmetric gossip.

The same Figure 9 also shows the performance of the randomized
symmetric gossip least square algorithm. As expected, the rate of
convergence is slower, but the final value converges to the minimum
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Consensus Algorithm E[J̄(∞)] max J̄(∞) min J̄(∞)

Broadcast w = 0.5 3.9816 4.1477 3.9320
Broadcast w = 0.25 3.9615 4.0919 3.9318
Symmetric Gossip 3.9307 3.9307 3.9307

Ave. of local estim. 3.9635 3.9635 3.9635

JCent.L.S.

Centralized LS 3.9307

TABLE II
COMPARISON OF THE MEAN ESTIMATION RESIDUAL.

identification error given by the centralized least-square estimate
J(θ̂LS). We remark that all the single realizations tend to the exact
optimal value, as shown by the fact that there is no dispersion
around the mean value (Table II), not only that E[J̄(k)] tends
to optimal value. Finally, we tested also the randomized gossip
algorithm based on direct average of local least-square estimate.
More precisely, this strategy is based on the general algorithm
of Theorem 2 where xi(0) = θiLS and ηi(t) = xi(t), therefore
limt→∞ ηi(t) = 1

N

∑
n∈N θ̂

i
LS 6= θ̂LS . As shown in Figure 9,

this strategy has the same rate of convergence of the randomized
symmetric gossip (which computes the exact centralized least-
square solution), but a slightly worse performance. However, in
terms of communication complexity this algorithm only requires the
exchange of 2 parameters while the exact distributed least square
one requires in this example the exchange of 4 parameters. It has
to be noticed, though, that if the initial estimates were less reliable
(for instance because the graph topology were much less connected)
then the distributed least square would behave far better that the
simple solution of an average of the local least squares estimations.

VII. CONCLUSIONS

In this work we proposed consensus-based algorithms for wireless
sensor networks and we successfully applied them to experimental
data collected from a real WSN. In particular we applied these
algorithms to remove unknown offsets from the sensor measure-
ments and to identify the parameters of the wireless channel for
localization and tracking purposes. However, these algorithms are
rather general and can be applied in other fields and research areas.
For example, the offset removal algorithm could also be used to
detect malfunctioning sensors by observing the magnitude of the
compensation offset ôi, while the least square square parameter
identification algorithm can be used to identify any model parameter
which is linear in the data.

Many issues remain to be explored, in particular in terms
of correctly modeling real WSNs. For example we shown that
although the optimal solution to some problems depends on the
average of the initial conditions, there are algorithms which do
not guarantee convergence to the average, nonetheless providing

good performances. Therefore, there is a definite need to better
understand the trade-offs between performance, rate of convergence,
communication complexity and noise sensitivity for different con-
sensus strategies on real WSNs. Another important research avenue
is the formulation of possibly nonlinear or non-standard problems
into standard consensus problems.
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