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Abstract:
We aim at developing statistical tools that improve the accuracy and precision of the measurements
returned by triangulation Light Detection and Rangings (Lidars). To this aim we: i) propose and
validate a novel model that describes the statistics of the measurements of these Lidars, and that
is built starting from mechanical considerations on the geometry and properties of their pinhole
lens - CCD camera systems; ii) build, starting from this novel statistical model, a Maximum
Likelihood (ML) / Akaike Information Criterion (AIC) - based sensor calibration algorithm that
exploits training information collected in a controlled environment; iii) develop ML and Least
Squares (LS) strategies that use the calibration results to statistically process the raw sensor
measurements in non controlled environments. The overall technique allowed us to obtain empirical
improvements of the normalized Mean Squared Error (MSE) from 0.0789 to 0.0046.

1 Introduction

Lidars are ubiquitously used for mapping pur-
poses. Different types of Lidar technologies, such
as Time of Flight (ToF) and triangulation, have
different statistical performance. For example,
ToF Lidars have generically lower bias and mea-
surement noise variances than triangulation ones.
At the same time, triangulation Lidars are gen-
erally cheaper than ToF ones. The market pull
is then to increase the performance of cheaper
Lidars in a cost-effective way.

Improving the accuracy and precision of sen-
sors can then be done in different ways, e.g., by
improving their mechanical properties. In this pa-
per we have a precise target: improve the perfor-
mance indexes of triangulation Lidars by remov-
ing their biases and artifacts through opportune
statistical manipulations of the raw information
coming from the sensor.

The following literature review analyzes a set
of algorithms that are related to our aim.

Literature review It is convenient to catego-
rize the algorithms in the existing and relevant
literature as:

• procedures for the characterization or cali-
bration of the devices. Here characterization
means a thorough quantification of the mea-
surement noisiness of the device, while cali-
bration means an algorithm that aims at di-
minishing this noisiness level;

• when dealing with calibration issues, proce-
dures for the intrinsic or extrinsic calibration.
Here intrinsic means that the focus is on es-
timating the parameters of the Lidar itself,
while extrinsic means that the focus is on es-
timating the parameters resulted from sensor
positioning and installation.

Characterization issues: several pa-
pers discuss Lidar characterization is-
sues for both ToF [Kneip et al., 2009,
Reina and Gonzales, 1997,
Lee and Ehsani, 2008,
Sanz-Cortiella et al., 2011, Tang et al., 2009,
Tuley et al., 2005, Ye and Borenstein, 2002,
Anderson et al., 2005, Alhashimi et al., 2015]
and triangulation Lidars [Lima et al., 2015,
Campos et al., 2016]. Notice that, at the best
of our knowledge, for triangulation Lidars there
exist only two manuscripts: [Lima et al., 2015],



that discusses the nonlinearity of Neato Lidars,
and [Campos et al., 2016], that analyzes the
effect of the color of the target on the measured
distance. Importantly, [Lima et al., 2015] models
nonlinear effects on the measurements and the
variance of additive measurement noises as two
independent effects that can be modeled with a
second order polynomials on the actual distance.
From statistical perspectives, thus, authors
decouple the learning process into two separate
parts.

Calibration issues: as for the calibration
issues there is a relatively large number of
papers describing how to calibrate extrinsic
parameters either using additional sensors
(such as cameras) [Zhang and Pless, 2004b,
Mei and Rives, 2006, Jokinen, 1999,
Tiddeman et al., 1998], or just requir-
ing knowledge on the motion of the
Lidar itself [Andreasson et al., 2005,
Wei and Hirzinger, 1998, McIvor, 1999,
Zhang and Pless, 2004a].

Still considering calibration issues, there
has been also a big effort on how to per-
form intrinsic calibration for multi-beam Lidar
systems, where the results from one beam
is used to calibrate the intrinsic parame-
ters of other beams [Chen and Chien, 2012,
Muhammad and Lacroix, 2010,
Atanacio-Jiménez et al., 2011,
Glennie and Lichti, 2010,
Glennie and Lichti, 2011, Glennie, 2012,
Gordon and Meidow, 2013, Mirzaei et al., 2012,
Gong et al., 2013, Park et al., 2014]. As
for single-beam Lidar systems, in-
stead, [Mirzaei et al., 2012] proposes a method
for the intrinsic calibration of a revolving-head
3D Lidar and the extrinsic calibration of the
parameters with respect to a camera. The
technique involves an analytical method for com-
puting an initial estimate for both the Lidar’s
intrinsic parameters and the Lidar-camera
transformation, that is then used to initialize an
iterative nonlinear least-squares refinement of all
of the calibration parameters.

We also mention the topic of online calibra-
tion of sensor parameters for mobile robots when
doing Simultaneous localization and mapping
(SLAM), very useful in navigation tasks. In this
category, [Kümmerle et al., 2011] proposes an ap-
proach to simultaneously estimate a map of the
environment, the position of the on-board sen-
sors of the robot, and its kinematic parameters.
These parameters are subject to variations due

to wear of the devices or mechanical effects like
loading. An other similar methodology for the in-
trinsic calibration of depth sensor during SLAM
is presented in [Teichman et al., 2013].

Statement of Contributions We focus
specifically on triangulation Lidars for robotic
applications, and aim to increase their per-
formance of in a cost-effective way through
statistical processing techniques. Our long
term vision is to arrive at a online auto-
matic calibration procedure for triangula-
tion Lidars like in [Kümmerle et al., 2011,
Teichman et al., 2013]; before reaching this
above long-term goal, we must nonetheless
solve satisfactorily the problem of calibrating
triangulation Lidars offline.

In this paper we thus:
• propose and assess a model for the mea-

surement process of triangulation Lidars (see
Section 3 and model (1)). Our model
not only generalizes the model proposed
in [Lima et al., 2015, Campos et al., 2016],
but also motivates it starting from mechan-
ical and physical interpretations;

• on top of this model, propose and assess a
ML calibration procedure that uses data from
a Motion Capture (MoCap) system. Impor-
tantly, our calibration procedure extends the
one proposed in [Lima et al., 2015]: there au-
thors decoupled the learning process into two
separate stages (corresponding to estimate
two different sets of parameters), while here
the calibration is performed simultaneously on
both the sets of parameters;

• propose and assess novel ML and LS strate-
gies for correcting the measurements from the
sensor with the model inferred during the cal-
ibration stage.
As reported in (31) and (32), the overall strat-

egy is then shown to be capable to improve the
normalized MSE of the raw information from the
sensor from 0.0789 to 0.0046.

1.1 Organization of the
Manuscript

Section 2 describes the working principles of tri-
angulation Lidars. Based on these working prin-
ciples, Section 3 proposes a statistical model of
the measurement process of the device. Section 4
then validates this statistical model using data ac-
quired through a MoCap system. Section 5 then



presents a calibration algorithm for sensors de-
ployed in a test environment. Section 7 eventu-
ally concludes the paper with the description of
future research issues.

2 The Triangulation Lidar Range
Sensor

We now describe the functioning principle of
the triangulation scanners; this discussion will be
useful for explaining why the moments of the
measurement noise depend on the actual mea-
sured distance. More details about the construc-
tive details of triangulation Lidars can be found
in [Blais, 2004, Konolige et al., 2008].

A prototypical triangulation Lidar is the one
in Figure 1. Its working principles are then ex-
plained with the diagram in Figure 2 and its cap-
tion.

Figure 1: Photo of a triangulation Lidar.

This simple working principle helps keeping
the cost of the sensor low1, and making it com-
mercially usable in low-cost devices like robotic
vacuum cleaners. The low cost of the sensor
comes nonetheless with some well-defined me-
chanical problems [Konolige et al., 2008]:

• low-cost lens, that generate nonlinear distor-
tion effects;

• imprecise pointing accuracies, that are known
of at best 6 degrees;

• not rigid physical linkages among lens ele-
ments, camera, laser, and laser optics, that
may suffer of distortion effects during the life
of the device.

1Incidentally, the sensor was costing $135.00 as of
February 2016 in Ebay. Nonetheless, the original in-
dustrial goal was to reach an end user price of $30.00.
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Figure 2: Diagram exemplifying the working principle
of a triangulation Lidar . The laser emits an infra-
red laser signal that is then reflected by the object
to be detected. The beam passes through a pinhole
lens and hits a CCD camera sensor. By construction,
thus, the triangles defined by (b, dk) and by (b′k, d

′)
are similar: this means that the distance to the ob-
ject is nonlinearly proportional to the angle of the
reflected light, and as soon as the camera measures
the distance b′k one can estimate the actual distance
dk using triangles similarities concepts.

As it can be seen in Figure 3, all these problems
induce measurement errors; more precisely, trian-
gulation Lidars suffer of strong nonlinearities in
both the bias and the standard deviation of the
measurement noise. This pushes towards find-
ing some signal processing tools that can alleviate
these problems, and keep the sensor cheap while
improving its performance.
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Figure 3: Dataset



3 A novel statistical model for the
Lidar measurements

Let yk be the k-th measurement returned by
the Lidar when the true distance is dk. Physi-
cally, yk is computed by the logic of the sensor
through a static transformation of b′k in Figure 2;
we assume here that this static transformation is
unknown, that b′k is not available, and that we
want to improve the estimation for dk from just
yk.

Our ansatz for the whole transformation from
dk to yk is then

yk = f(dk) + f(dk)2ek (1)

where
• f(·) is an unknown non-linear function;
• ek ∼ N

(
0, σ2

e

)
is a Gaussian and white addi-

tive measurement noise.
In the following Section 3.1 we motivate the

presence of f(·) from mechanical considerations,
while in the following Section 3.2 we motivate
the presence of the f(·)2 multiplying the noise
ek starting from physical considerations.

3.1 Explaining the presence of the
nonlinear term f(·) in
model (1)

The nonlinear term f(·) in (1) is related to what
is called the radial distortion in camera calibra-
tion literature [Zhang, 2000, Weng et al., 1992,
Brown, 1964, Duane, 1971]. Indeed camera lenses
are notoriously nonlinear at their borders, with
this nonlinearity increasing as the light beam
passes closer to the lens edges. In our settings
this thus happens when targets are very close or
very far.

Radial distortions are usually modeled in the
camera calibration literature as a series of odd
powers, i.e., as

f(dk) =

n∑
i=0

αid
2i+1
k (2)

where the αi’s are the model parameters.
As numerically shown during the validation

of (1) in Section 4, model (2) does not describe
well the evidence collected in our experiments.
Indeed the specific case of triangulation Lidars
lacks of the symmetries encountered in computer
vision settings (see (4) and the discussion on that
identity), and thus in our settings there is no need

for odd symmetries in the model (in other words,
doubling d does not lead to doubling b′). We thus
propose to remove this constraint and use a po-
tentially non-symmetric polynomial, i.e.,

f(dk) =

n∑
i=0

αid
i
k. (3)

The numerical validations of model (3) shown in
Section 4 confirm then our physical intuition.

3.2 Explaining the presence of the
multiplicative term f(dk)

2 in
model (1)

Assume for now that there are no lens-distortion
effects. The similarity between the triangles in
Figure 2 then implies

dk
b

=
d′

b′k
. (4)

In (4) dk and b′k are generally time-varying quan-
tities, while b and d′ are constants from the ge-
ometry of the Lidar. Assume now that the quan-
tity measured by the CCD at time k is corrupted
by a Gaussian noise, so that zk = b′k + wk with
wk ∼ N

(
0, σ2

CCD
)
and σ2

CCD constant and inde-
pendent of dk. Thus zk ∼ N

(
b′k, σ

2
CCD

)
; since

yk =
bd′

zk
, (5)

assuming a Gaussian measurement noise on the
CCD implies that yk is a reciprocal Gaussian r.v.
This kind of variables are notoriously difficult to
be treated (e.g., their statistical moments cannot
be derive from closed form expressions starting
from the original Gaussian variables). For this
reason we perform a first order Taylor approxima-
tion of the nonlinear map (5) above. In general,
if {

zk ∼ N
(
b, σ2

)
yk = φ (zk)

(6)

then the first order Taylor approximation of the
distribution of yk is [Gustafsson, 2010, (A.16)]

yk ∼ N
(
φ(b), φ′(b)2σ2

)
(7)

where φ′(·) is the first derivative of φ(·) w.r.t. zk.
Substituting the values of our specific problem
into formula (7) leads then to the novel approxi-
mated model

yk ∼ N

(
bd′

b′k
,

(
−bd′

b′2k

)2

σ2
CCD

)
, (8)



or, equivalently,

yk = dk + d2
kek ek ∼ N

(
0, σ2

e

)
(9)

where σ2
e =

σ2
CCD
b2d′2

is a scaled version of σ2
CCD

independent of dk and to be estimated from the
data.

Consider now that actually there are some lens
distortion effects that imply the presence of the
nonlinear term f(dk). We can then repeat the
very same discussion above, and obtain model (1)
by substituting dk with f(dk) in (9).

4 Validation of the
approximation (8)

The approximation introduced by the first or-
der Taylor expansion in (8) can be seen as arbi-
trary. Nonetheless we show in this section that on
the collected datasets it actually corresponds to
the most powerful approximation in a statistical
sense.

To this aim we perform this two-step valida-
tion:
1. (check if the noises are independent and iden-

tically distributed (iid) and normal) perform
a normality test on the yk’s assuming that
measurements are collected at a fixed distance
(i.e., dk is constant): indeed ek is approxi-
mately Gaussian as much as yk is;

2. (check the order of the term multiplying ek)
compare the following alternative statistical
models for the measurements yk:

H0 : yk = f(dk) + ek

H1 : yk = f(dk) + f(dk)ek

H2 : yk = f(dk) + f(dk)2ek

H3 : yk = f(dk) + f(dk)3ek

(10)

and check which one describes better the col-
lected information.
As for point 1 we can use stan-

dard iid tests (like the Wald-Wolfowitz
runs [Croarkin and Tobias, 2006]) and stan-
dard normality tests (like the Shapiro-Wilk
normality test). These tests performed on our
registered data showed p-values of 0.56 and 0.42,
so we can safely consider the measurement noises
to be iid and Gaussian.

As for point 2, we instead consider the fol-
lowing strategy: for every model above, assum-
ing that measurements are collected at a fixed

distance (i.e., dk is constant), we can perform a
simple algebraic manipulation of (1) to obtain

yk − yk−1

f(dk)?
= ek − ek−1 (11)

where ? indicates the order of the model (that
means ? ∈ {0, . . . , 3}). (11) in its turn indicates
that, since ek and ek−1 are assumed iid,

yk − yk−1

f(dk)?
∼ N

(
0, 2σ2

e

)
, ? ∈ {0, . . . , 3} . (12)

Assume now that the dataset is composed by
different batches each corresponding to dk’s that
are constant in the batch, but different among
batches. Moreover assume that each batch is
sufficiently rich to make it is possible to esti-
mate with good confidence the unknown f (dk)
through the empirical mean of the yk relative to
that batch. By combining the information from
different batches it is then possible to check which
model ? describes better the measured informa-
tion.

Indicate then with B the number of batches in
the dataset, with b = 1, . . . , B the index of each
batch, and with Bb the set of k’s that are relative
to that specific batch b. In formulas, we thus:

1. estimate, for each model batch b = 1, . . . , B,
the distance

f̂b =
1

|Bb|
∑
k∈Bb

yk; (13)

2. estimate, for each model ? = 0, . . . , 3, the vari-
ance of ek as

σ̂2
e :=

1

B

B∑
b=1

 1

2|Bb|
∑

k,k−1∈Bb

(
yk − yk−1

f̂?b

)2
 .

(14)

3. compute, for each model ? = 0, . . . , 3, the log-
likelihood of the data as

− logP
[
y ; d, σ̂2

e

]
=

B∑
b=1

|Bb| log
(
f̂2?
b σ̂2

e

)
+

Bb∑
k=1

(
yk − f̂b

)2

f̂2?
b σ̂2

e


(15)

where y := [y1, . . . , yN ]T and d :=
[d1, . . . , dN ]T .

In Figure 4 we then show the log-likelihoods
for the different models. As it can be seen, hypoth-
esis H2 is the one that best describes the collected
evidence.
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Figure 4: Evaluation of (15) on the collected datasets.

A non rigorous (but graphical and intuitive)
argument supporting H2 as the hypothesis best
describing the evidence is then the one offered in
Figure 5. The argument goes as follows: for the
exact ? ∈ {0, . . . , 3} the quantities

yk − yk−1

f(dk)?
? ∈ {0, . . . , 3} . (16)

should be iid independently of dk. This iid-ness
is indeed a necessary condition for iid-ness of the
measurement noises (one of our assumptions).

Since f(·) is actually unknown, this iid-ness
test must be performed by means of some esti-
mate of f(·). In the following we use the estima-
tor defined in Section 5 over an experiment where
we manually increase the true distance dk. As
it can be seen, the hypothesis H2 is the unique
one for which the quantities

yk − yk−1

f̂(dk)?
are ho-

moscedastic. Thus the normalizing factor ? = 2 is
the unique one guaranteeing iid-ness for the mea-
surement noises. Notice that this argument is a
non rigorous wishful thinking, since we use some
estimates as the ground truth; nonetheless the
heteroscedasticity of the noises for ? = 0, 1, 3 in-
dicates that these hypotheses are non-descriptive.

5 Calibrating the Lidar

Our overall goal is not just to propose the
statistical model (1) describing the measurement
process of the Lidar but also to find a calibration
procedure for estimating the unknowns f(·) and
σ2
e from some collected information.
Once again the long term goal is to cali-

brate (1) on-line and continuously using informa-
tion from other sensors like odometry, ultrasonic
sensors, etc. Instrumental to this future direction
we now solve the first step, that is to estimate
f(·) and σ2

e from a dataset D = {yk, dk} in which
we know dk (e.g., thanks to a MoCap system).

Given our Fisherian setting, we seek for the
ML estimate for both f(·) and σ2

e , where we recall

y k
−
y k
−

1

y k
−
y k
−

1

f̂
(d
k
)

y k
−
y k
−

1

f̂
(d
k
)2

2 3 4

distance [m]

y k
−
y k
−

1

f̂
(d
k
)3

Figure 5: Plots of the quantities
yk − yk−1

f̂(dk)?
for ? =

0, . . . , 3 and for increasing dk and for f̂(·) computed
as in Section 5. The results graphically suggest that
f̂(dk)

2 is the unique normalizing factor for which we
obtain homoscedastic samples.

that (due to the radial distortion hypothesis as
the source of f(·), see Section 3.1) f(·) is modeled
as a non-symmetric polynomial, i.e., as f(dk) =∑n
i=0 αid

i
k as in (3). Since now model (1) implies

yk − f(dk) ∼ N
(
0, f(dk)4σ2

e

)
, (17)

it follows immediately that the corresponding
negative log-likelihood is proportional to

L := log (det Σ) +
(
y − f(d)

)T
Σ−1

(
y − f(d)

)
(18)

where
• y := [y1, . . . , yN ]T ;
• d := [d1, . . . , dN ]T ;
• f(d) := [f(d1), . . . , f(dN )];
• Σ := diag

(
f(d1)4σ2

e , . . . , f(dN )4σ2
e

)
.

Finding the ML estimates in our settings thus
means:
1. solving

arg min
θ∈Θ
L (θ) (19)

for several different n, with

θ :=
[
α0, . . . , αn, σ

2
e

]
(20)



and Θ the set of θ ∈ Rn+1 for which σ2
e > 0;

2. deciding which n is the best one using some
model order selection criterion, e.g., AIC.

Unfortunately problem (19) is not convex, so
it neither admits a closed form solution nor it
can be easily computed using numerical proce-
dures. Solving problem (19) is thus numerically
difficult. Keeping in mind that our long-term
goal is the development of on-line calibration pro-
cedures, where numerical problems will be even
more complex, we strive for some alternative cal-
ibration procedure.

5.1 An approximate calibration
procedure

We here propose an alternative estimator that
trades off statistical performance for solvability
in a closed form. We indeed propose to seek an
estimate for θ in (20) by using the alternative
model

yk = f(dk) + d2
kek, (21)

that differs from (1) only for the fact that the
noise is multiplied by d2

k instead of f(dk)2. This
approximation is intuitively meaningful, since
f(dk) represents a distortion term induced by
the pinhole lens: ideally, indeed, f(dk) should be
equal to dk.

Assuming model (21) it is now possible do de-
rive a ML estimator of θ. Indeed dividing both
sides of (21) by d2

k we get

yk
d2
k

= g(dk) + ek (22)

where (cf. (3))

g(dk) =

n∑
i=0

αid
i−2
k . (23)

This means that the estimation problem can be
cast as the problem of estimating the parameters
α := [α0, . . . , αn]

T and the noise variance σ2
e de-

scribing the linear system

yk
d2
k

=
[
d−2
k . . . dn−2

k

] α0

...
αn

+ ek, (24)

for which the ML solution is directly

α̂ =
(
HTH

)−1
HT ỹ

σ̂2
e =

1

N
(ỹ −Hα̂)

T
(ỹ −Hα̂)

(25)

with

H :=

d
−2
1 · · · dn−2

1
...

...
d−2
N · · · dn−2

N

 ỹ :=


y1

d2
1
...
yN
d2
N

 . (26)

Notice that the procedure above does not de-
termine the model complexity n. For inferring
this parameter we then propose to rely on classi-
cal model order selection criteria such as AIC.

5.2 Using the calibration results
to estimate dk

Once the sensor has been calibrated, i.e., a α̂ and
σ̂2
e have been computed, it is possible to invert

the process and use the learned information for
testing purposes. This means that given some
measurements yk collected in an unknown envi-
ronment we can, through α̂ and σ̂2

e , estimate dk.

5.2.1 Computing the ML estimate of dk

Rewriting model (3) as

f(dk) = dTkα dk :=


d0
k

d1
k
...
dnk

 (27)

and equating the score of yk parametrized by α
and σ2

e to zero leads to the equation(
yk − dkα

)(
yk − dk (I −K)α

)
= σ2

ed
4
k (28)

with

K := diag

(
0,

1

2
, . . . ,

n

2

)
. (29)

This means that estimating dk from yk, α̂ and
σ̂2
e can be performed by solving (28) in dk after

substituting the real values α and σ2
e with their

estimates.
Since polynomial (28) is quartic for n = 0, 1, 2,

and of order at least 6 for any other n, the ML es-
timate for dk must then either rely on complex al-
gebraic formulas or numerical roots finding meth-
ods.

5.2.2 Computing the LS estimate of dk

Given our assumption (3) on the structure of f(·),
and given an estimate f̂ for f , the problem of
estimating dk from yk is the one of minimizing



the squared loss
(
yk − f̂ (dk)

)2. Once again, the
problem is of finding the roots of a polynomial,
since the solutions of the LS problem above are
directly

d̂k ∈
{
d̃ s.t. yk − f̂

(
d̃
)

= 0
}
. (30)

Thus if the Lidar has heavy nonlinear radial dis-
tortions (that means that it requires high order
polynomials f (·)) then one is again required to
compute polynomials’ roots.

Notice also that some of the roots above may
not belong to the measurement range of the sen-
sor (e.g., some roots may be negative); these ones
can safely be discarded from the set of plausible
solutions. The other ones, instead, are equally
plausible.

This raises a question on how to decide which
root should be selected among the equally plau-
sible ones. This question is actually non-trivial,
and cannot be solved by means of the frequentist
approach used in this manuscript. We thus leave
this question unanswered for now, and leave it as
a future research question, that will probably be
solved by using Bayesian formalisms.

6 Numerical experiments

Our experiments consist in a robot with the
Lidar mounted on top moving with piecewise
constant speeds towards a target. We recorded
several datasets for training and testing pur-
poses, consisting of the Lidar measurements and
a ground truth information collected by a MoCap
system (see Figure 6). Training datasets were

Figure 6: Experimental setup used for recording the
dataset. The Lidar was mounted over a Pioneer 3AT
robot facing an obstacle; the photo moreover shows
some of the cameras of the MoCap system.

thus initially used to estimate α and σ2
e as de-

scribed in Equation (25). As for the model order

polynomial order AIC score
1 -5.774
2 -7.380
3 -5.824
4 -3.890

Table 1: AIC scores for the different models complex-
ities involved in the training set of Figure 7.

selection, we empirically detected that n = 2 was
always the best choice when using AIC measures.
E.g., for the dataset shown in Figure 7 we ob-
tained the AIC scores reported in Table 1.
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Figure 7: A typical training set collected in our ex-
periments. The plotted quantities correspond to the
measurement errors and to the polynomial models fit-
ting these errors.

The estimated α and σ2
e were also used for

testing purposes to refine the estimate of the dis-
tances dk in non-controlled environments. Notice
that the selected model order was always 2, so it
was always possible to solve the LS problem in
a closed form and also discard one of the roots
in (30), so that the set of roots was always a sin-
gleton. As shown in Figure 8, d̂k is much closer
to dk than yk. For example, the empirical nor-
malized MSEs for the test set in Figure 8 were

1

N

N∑
k=1

∥∥∥d̂k − dk∥∥∥2

‖dk‖2
= 0.0046, (31)

1

N

N∑
k=1

‖yk − dk‖2

‖dk‖2
= 0.0789. (32)

7 Conclusions

We derived, starting from a combination of
physical and statistical considerations, a model
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Figure 8: Effects of the estimation procedure on the
original Lidar measurement. It can be noticed how
the overall strategy removes the nonlinearities in-
duced by the pinhole lens - CCD camera system.

that describes the statistical behavior of the mea-
surements returned by triangulation Lidars. This
statistical model, given in (1), is based on two
assumptions:
1. the effects of radial distortions in the pinhole

lens can be captured by means of a polynomial
function;

2. the nonlinearities induced by the geometry
of the laser-CCD system can be captured by
means of a heteroscedastic noise which stan-
dard deviation depends in first approximation
quadratically with the measured distance.
This model, validated through some experi-

ments on real devices, allows to build tailored tri-
angulation Lidars calibration strategies that fol-
low the classical training-testing paradigm:
• in the training phase, collect information in

a controlled environment and use it to esti-
mate through ML paradigms the parameters
defining the statistical behavior of the sensor;

• in the test phase, use this information and
some statistical inference techniques such as
ML or LS to correct the measurements from
the sensor when this is in a non-controlled en-
vironment.
It turns then out that both the ML and LS es-

timation strategies may be numerically demand-
ing, specially for sensors suffering of strong radial
distortions in the pinhole camera. In this case, in-
deed, the estimators may require to use numerical
root finding procedures and lead to some compu-
tational disadvantages.

Irrespectively of these issues, that can in any
case be mitigated by limiting the complexity of
the polynomials describing the radial distortions,
the estimation strategies above have been proved
to be effective in our tests. Real-life experiments
indeed showed that the techniques allow to reduce
the empirical MSE of the sensor of a factor 17.15.

Despite this promising result, the research as-
sociated to triangulation Lidars is not finished:
indeed, by following a classical training-testing
approach, the techniques above present some lim-
itations. Different sensors may in fact differ even
if nominally being constructed in the same way.
Moreover sensors may change their statistical be-
havior in time, due to aging or mechanical shocks.
This means that techniques based on results from
a controlled environment on just one sensor and
just once are eventually not entirely meaningful.

A robust approach must indeed perform con-
tinuous learning for each sensor independently in
a non-controlled environment by performing in-
formation fusion steps, e.g., combining also infor-
mation from other sensors like odometry, ultra-
sonic and accelerometers.

This information-fusion continuous-learning
algorithm nonetheless must be based on some pre-
liminary results on what are the statistical models
of triangulation Lidars and on how inference can
be performed on them. This paper can thus be
seen as the first step towards more evolved strate-
gies.
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